Residual Stress Analysis of A Multi-Layer Thin Film Structure by Destructive (Curvature) and Non-Destructive (X-Ray) Methods

1989 ◽  
Vol 153 ◽  
Author(s):  
P.C. Chen ◽  
Yoshiki Oshida

AbstractMulti-layer thin film which has structure of Cu/Cr/K/Cr/Cu prepared by sputtering process was analyzed for interfacial stresses for as-deposited conditions. This structure was also annealed at 150°C, 250°C, and 350°C for around 15 min. in a vacuum and cooled slowly down for stress analyses.Equations derived by Osgood [1] for residual stress estimations for homogeneous material system using layer removal technique (stress relief) is now applied for inhomogeneous system (multilayer structure). The results are compared with the data obtained from x-ray diffraction technique by using sin2Ψ-2θ method, for Cu layer.From the present analyses, the data obatined using layer removal seem to be qualitatively consistent with but not quantitatively in agreement with x-ray method. Data obtained using the layer removal method have some overlaps with those obtained from x-ray technique. However, in details, data from the curvature method present different scattering band from the x-ray method. It is suggested that the layer removal method is more practical to be used to estimate the average residual stress of the multi-layer system not only because the layer removal method estimates the bulk behavior but also when the metal film is thin (e.g., 200A for Cr layer), x-ray technique becomes impractical. By annealing the sputtered structure up to 250°C, the residual stresses, in particularly Cu layer, decreased on both sides in x- and y-directions.From the main results drawn from the present studies, the layer removal sequence for the curvature method shows significant affects on the obtained results of residual stresses. Minimizing influences caused by layer removal sequences as well as removing duration and temperature provides the most accurate results on residual stress measurements.

Author(s):  
E.F. Rybicki ◽  
J.R. Shadley ◽  
R.T.R. McGrann ◽  
A.C. Savarimuthu ◽  
D. Graving

Abstract Thermal spray coatings are subjected to mechanical loadings in many applications, and there is a need to evaluate the mechanical properties of these coatings. Mechanical properties of interest in the performance of thermal spray coatings include fatigue life, wear resistance, bond strength. Young's modulus, Poisson's ratio, and residual stresses. One property that has a large effect on the performance of thermal spray coated parts is the residual stress distribution in the thermal spray coating and in the substrate. Thus, it is important to have (1) a fundamentally sound method for evaluating residual stresses and (2) a written recommended procedure for applying the method. ASM International is not a standard writing organization. Yet, the increased use of thermal spray coatings and the need for documentation on methods for evaluating mechanical properties of thermal spray coatings have generated a need to prepare Recommended Practices. To meet this need, the ASM International Thermal Spray Society has formed three subcommittees to prepare Recommended Practices for thermal spray coatings. This paper describes a draft form of a Recommended Practice for evaluating residual stresses in thermal spray coatings. This Recommended Practice is being developed by the Subcommittee on "Evaluating of Mechanical Properties of Thermal Spray Coatings". The method, called the Modified Layer Removal Method, has been presented in several papers and has been used for a variety of different coatings. The paper describes the dimensions of the test specimen, the equipment needed, the procedure for removing layers, and the methods for collecting and interpreting the data to evaluate through thickness residual stresses. The Recommended Practice (RP) is in Draft form, but is presented to let the thermal spray community know about the RP effort and invite comments and volunteers to write other RP's.


2020 ◽  
Vol 112 ◽  
pp. 113826
Author(s):  
S. Chen ◽  
Y.F. En ◽  
G.Y. Li ◽  
Z.Z. Wang ◽  
R. Gao ◽  
...  

2005 ◽  
Vol 297-300 ◽  
pp. 515-520
Author(s):  
Tarou Tokuda ◽  
Rong Gang Wang ◽  
Mitsuo Kido ◽  
Gonojo Katayama

This study deals with the indentation method of measuring residual stress in structural ceramics. First we investigate the appropriate pretreatment for measuring fracture toughness (basis value, KC) while avoiding any influence from residual stress, which is important when estimating residual stress using the indentation method. Based on the fracture toughness value, the residual stresses in Al2O3, Si3N4 and ZrO2 ceramics are estimated using the indentation method. Phase transformation is a problem when estimating residual stress using the indentation method with ZrO2 ceramics. Residual stresses in Al2O3 and Si3N4 can be largely eliminated by annealing the specimen after hand grinding. Consequently, it is thought that this treatment method is effective for determining the basis value KC. The estimated residual stress values in Al2O3 and Si3N4 obtained by the indentation method at 98 N corresponded closely to the values obtained wih X-rays. The residual stress value obtained by the indentation method for ZrO2 was close to the value obtained through the X-ray method, when the indentation load was 294 N. When estimating the residual stress in ZrO2 using the indentation method, the influence of the phase transformation caused by the indentation is added onto the original residual stress, when the indentation is small. The influence becomes smaller when the indentation load is large. If the applied indentation load is between 294 N and 490 N, the indentation method is effective for estimating the residual stresses in Al2O3, Si3N4 and ZrO2 ceramics.


2013 ◽  
Vol 768-769 ◽  
pp. 420-427 ◽  
Author(s):  
Jeremy Epp ◽  
Thilo Pirling ◽  
Thomas Hirsch

In this paper the microstructural and residual-stress analysis of an induction hardened plate of medium carbon steel is described. The stress gradient was determined using laboratory X-ray diffraction (IWT, Bremen, Germany) and neutron strain scanning (ILL, Grenoble, France). Due to slight variations of chemical composition in the depth, matchstick like (cross section 2×2mm²) d0-reference samples were prepared from a similarly treated sample. The d0shift induced by variation of chemical composition was measured by neutron and by X-ray diffraction along the strain free direction (sin²ψ*) and used for the evaluation of the neutron stress calculation. The d0distribution obtained from the neutron measurement did not appear reliable while the method using X-ray diffraction seems to be an efficient and reliable method to determine d0profiles in small samples. The evaluation of neutron measurements was then done using the X-ray diffraction d0distribution. High compressive residual stresses were measured in the hardened layer followed by high tensile residual stresses in the core. A comparison of the neutron measurements with X-ray diffraction (XRD) depth profiles obtained after successive layer removal showed that both methods give similar results. However, these investigations opened the question about the direct comparison of the residual stresses obtained by neutron and XRD. Indeed, a correction of the neutron data regarding the residual stresses in thickness direction might be necessary as these are released in the case of X-ray diffraction measurements after layer removal.


1981 ◽  
Vol 16 (12) ◽  
pp. 3514-3516 ◽  
Author(s):  
A. Siegmann ◽  
A. Buchman ◽  
S. Kenig

Procedia CIRP ◽  
2021 ◽  
Vol 101 ◽  
pp. 42-45
Author(s):  
Maria Aurrekoetxea ◽  
Ravi Bilkhu ◽  
Iñigo Llanos ◽  
Sabino Ayvar-Soberanis ◽  
Luis Norberto Lopez de Lacalle

Sign in / Sign up

Export Citation Format

Share Document