Heteroepitaxy Between Lattice Mismatched Materials with Van Der Waals Interactions

1990 ◽  
Vol 198 ◽  
Author(s):  
Atsushi Koma

ABSTRACTThe lattice matching condition encountered usually in the heteroepitaxial growth has been proved to be relaxed drastically, if one uses the interface having van der Waals nature. Such interface can be realized on a cleaved face of a layered material or a quasi-one dimensional material and on a surface of a dangling-bond-terminated three dimensional material. Various kinds of heterostructures, which cannot be made by conventional growth methods, can be fabricated by using a variety of layered transition metal dichalcogenides, in which there exist superconducting, metallic, semiconducting or insulating layered materials. Moreover those heterostructures have been found to be grown on such an ordinary three-dimensional material as GaAs, if the dangling bonds on its surface are terminated by suitable atoms.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ji-Hee Kim ◽  
Matthew R. Bergren ◽  
Jin Cheol Park ◽  
Subash Adhikari ◽  
Michael Lorke ◽  
...  

AbstractCarrier multiplication (CM) is a process in which high-energy free carriers relax by generation of additional electron-hole pairs rather than by heat dissipation. CM is promising disruptive improvements in photovoltaic energy conversion and light detection technologies. Current state-of-the-art nanomaterials including quantum dots and carbon nanotubes have demonstrated CM, but are not satisfactory owing to high-energy-loss and inherent difficulties with carrier extraction. Here, we report CM in van der Waals (vdW) MoTe2 and WSe2 films, and find characteristics, commencing close to the energy conservation limit and reaching up to 99% CM conversion efficiency with the standard model. This is demonstrated by ultrafast optical spectroscopy with independent approaches, photo-induced absorption, photo-induced bleach, and carrier population dynamics. Combined with a high lateral conductivity and an optimal bandgap below 1 eV, these superior CM characteristics identify vdW materials as an attractive candidate material for highly efficient and mechanically flexible solar cells in the future.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Jordi Ibáñez-Insa ◽  
Tomasz Woźniak ◽  
Robert Oliva ◽  
Catalin Popescu ◽  
Sergi Hernández ◽  
...  

Rhenium disulfide (ReS2), known in nature as the mineral rheniite, is a very interesting compound owing to its remarkable fundamental properties and great potential to develop novel device applications. Here we perform density functional theory (DFT) calculations to investigate the structural properties and compression behavior of this compound and also of the (Re,Mo)S2 solid solution as a function of Re/Mo content. Our theoretical analysis is complemented with high-pressure X-ray diffraction (XRD) measurements, which have allowed us to reevaluate the phase transition pressure and equation of state of 1T-ReS2. We have observed the 1T-to-1T’ phase transition at pressures as low as ~2 GPa, and we have obtained an experimental bulk modulus, B0, equal to 46(2) GPa. This value is in good agreement with PBE+D3 calculations, thus confirming the ability of this functional to model the compression behavior of layered transition metal dichalcogenides, provided that van der Waals corrections are taken into account. Our experimental data and analysis confirm the important role played by van der Waals effects in the high-pressure properties of 1T-ReS2.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Ya-Wei Huan ◽  
Ke Xu ◽  
Wen-Jun Liu ◽  
Hao Zhang ◽  
Dmitriy Anatolyevich Golosov ◽  
...  

AbstractHybrid heterojunctions based on two-dimensional (2D) and conventional three-dimensional (3D) materials provide a promising way toward nanoelectronic devices with engineered features. In this work, we investigated the band alignment of a mixed-dimensional heterojunction composed of transferred MoS2 on β-Ga2O3($$ 2- $$2-01) with and without nitridation. The conduction and valence band offsets for unnitrided 2D-MoS2/3D-β-Ga2O3 heterojunction were determined to be respectively 0.43 ± 0.1 and 2.87 ± 0.1 eV. For the nitrided heterojunction, the conduction and valence band offsets were deduced to 0.68 ± 0.1 and 2.62 ± 0.1 eV, respectively. The modified band alignment could result from the dipole formed by charge transfer across the heterojunction interface. The effect of nitridation on the band alignments between group III oxides and transition metal dichalcogenides will supply feasible technical routes for designing their heterojunction-based electronic and optoelectronic devices.


1994 ◽  
Vol 340 ◽  
Author(s):  
L. E. Rumaner ◽  
F.S. Ohuchi

ABSTRACTAlthough heteroepitaxy of lattice-matched and lattice-mismatched materials leading to artificially structured materials has resulted in impressive performance in various electronics devices, material combinations are usually limited by lattice matching constraints. A new concept for fabricating material systems using the atomically abrupt and low dimensional nature of layered materials, called van der Waals epitaxy (VDWE), has been developed. GaSe (Eg = 2.1 eV) has been deposited on the three dimensional surface of GaAs (111) using a molecular beam deposition system. GaSe was evaporated from a single Knudsen source, impinging on a heated substrate. Even with a lattice mismatch of 6% between the substrate and the growing film, good quality single crystal films were grown as determined by RHEED. The films have further been analyzed using a complementary combination of XPS and X-ray reflectivity.


Sign in / Sign up

Export Citation Format

Share Document