InGaAs/AWAsSb Heterostructures Lattice-Matched to InP GRown by Molecular Beam Epitaxy

1990 ◽  
Vol 198 ◽  
Author(s):  
Y. Nakata ◽  
Y. Sugiyama ◽  
T. Inata ◽  
O. Ueda ◽  
S. Sasa ◽  
...  

ABSTRACTWe have successfully grown InGaAs/AIAsSb quantum-well (QW) structures lattice-matched to InP by molecular beam epitaxy for the first time. We studied the band-edge discontinuity and the interface abruptness of these heterostructures. A cross-sectional lattice image of InGaAs/AlAsSb QWs taken along the [100] axis showed atomically smooth heterointerfaces. The photoluminescence (PL) peak energy of the 20-nm-thick InGaAs well (0.758 eV) was lower than that of InGaAs bulk (0.799 eV), indicating that the InGaAs/AlAsSb system has a staggered lineup. The conduction band-edge discontinuity, ΔEc, was evaluated to be 1.74 ± 0.04 eV, which was derived from parameter fitting to the 4.2 K PL peak energy shifts of QWs as a function of InGaAs well width between 2.1 nm and 20 nm. The corresponding valence band-edge discontinuity, ΔEv, was 0.07 ± 0.02 eV. We also fabricated a resonant tunneling barrier structure of InGaAs (4.4 nm)/AlAsSb (2.9 nm), and obtained a very high peak-to-valley current ratio of 15 at 300 K.

2004 ◽  
Vol 829 ◽  
Author(s):  
Masahiro Yoshimoto ◽  
Wei Huang ◽  
Kunishige Oe

ABSTRACTGaNyAs1-x-yBix alloy lattice-matched to GaAs has been grown by molecular beam epitaxy (MBE). The lattice-matching of GaNyAs1-x-yBix to GaAs was investigated by X-ray diffraction measurements on a series of GaNyAs1-x-yBix with various GaN molar fractions. GaNyAs1-x-yBix lattice-matched to GaAs was obtained, which was confirmed by its diffraction peak overlapped with the peak of GaAs. Photoluminescence (PL) of 1.3 μm was observed from GaNyAs1-x-yBix epilayer matched to GaAs at room temperature. The temperature coefficient of the PL peak energy in a temperature range 150–300K for GaNyAs1-x-yBix was 1/3 of InGaAsP with a bandgap corresponding to 1.3-μm emission. Both lattice-matching to GaAs and bandgap adjustment to 1.3-μm waveband were achieved for GaNyAs1-x-yBix for the first time. This alloy will lead to the fabrication of laser diodes with an emission of temperature insensitive wavelength.


1993 ◽  
Vol 325 ◽  
Author(s):  
Z.C. Huang ◽  
C.R. Wie ◽  
J.A. Varriano ◽  
M.W. Koch ◽  
G.W. Wicks

AbstractDeep levels in lattice matched Ga0.51In0.49P/GaAs heterostructure have been investigated by thermal-electric effect spectroscopy(TEES) and temperature dependent conductivity measurements. Four samples were grown by molecular beam epitaxy with various phosphorus (P2) beam equivalent pressure(BEP) of 0.125, 0.5, 2, and 4×10−4 Torr. We report for the first time, to our knowledge, an electrical observation of phosphorus vacancy point defects in the GaInP/GaAs material system. The phosphorus vacancies, Vp. behave as an electron trap which is located at EC−0.28±0.02 eV. We have found that this trap dominates the conduction band conduction when T> 220K, and is responsible for the variable-range hopping conduction when T < 220K. Its concentration decreases with the increasing phosphrous BEP. Successive rapid thermal annealing showed that its concentration increases with the increasing annealing temperature. Another electron trap at EC−0.51eV was also observed only in samples with P2 BEP less than 2×10−4 Torr. Its capture cross section is 4.5×10−15 cm 2 as obtained from the illumination time dependent TEES spectra.


2000 ◽  
Vol 622 ◽  
Author(s):  
M. Misra ◽  
T.D. Moustakas

ABSTRACTPhotoconductive detectors were fabricated on autodoped n-GaN films, with resistivity varying from 10 Ohm-cm to 107Ohm-cm, by molecular beam epitaxy. The mobility-lifetime product, determined from the measurement of photoconductive gain, was found to decrease monotonically from 10−2 cm2/V to 10−7 cm2/V as the dark resistivity was increased. This variation in the ντ products is attributed to changes in photocarrier lifetimes. In order to understand the recombination mechanisms responsible for this photoconductive behavior, the dependence of photoconductivity on excitation intensity (δμσ fλ) was investigated. The exponent λ was found to vary from 0.5 to 1.0, as the dark resistivity of the films increased. These results indicate the presence of exponential band tails extending from the conduction band edge. Furthermore, the dependence of photoconductivity on dark resistivity indicates that the photoconductive response is governed primarily by the location of the dark fermi level. A model accounting for these observations is presented.


1996 ◽  
Vol 450 ◽  
Author(s):  
C. A. Wang ◽  
G. W. Turner ◽  
M. J. Manfra ◽  
H. K. Choi ◽  
D. L. Spears

ABSTRACTGai1−xInxASySb1-y (0.06 < x < 0.18, 0.05 < y < 0.14) epilayers were grown lattice-matched to GaSb substrates by low-pressure organometallic vapor phase epitaxy (OMVPE) using triethylgallium, trimethylindium, tertiarybutylarsine, and trimethylantimony. These epilayers have a mirror-like surface morphology, and exhibit room temperature photoluminescence (PL) with peak emission wavelengths (λP,300K) out to 2.4 μm. 4K PL spectra have a full width at half-maximum of 11 meV or less for λP,4K < 2.1 μm (λP,300K = 2.3 μm). Nominally undoped layers are p-type with typical 300K hole concentration of 9 × 1015 cm−3 and mobility ∼ 450 to 580 cm2/V-s for layers grown at 575°C. Doping studies are reported for the first time for GalnAsSb layers doped n type with diethyltellurium and p type with dimethylzinc. Test diodes of p-GalnAsSb/n-GaSb have an ideality factor that ranges from 1.1 to 1.3. A comparison of electrical, optical, and structural properties of epilayers grown by molecular beam epitaxy indicates OMVPE-grown layers are of comparable quality.


1998 ◽  
Vol 83 (4) ◽  
pp. 2266-2271 ◽  
Author(s):  
W. J. Keeler ◽  
G. A. Keeler ◽  
D. A. Harrison ◽  
Z. R. Wasilewski

2019 ◽  
Vol 48 (10) ◽  
pp. 6138-6144
Author(s):  
R. N. Jacobs ◽  
B. Pinkie ◽  
J. Arias ◽  
J. D. Benson ◽  
L. A. Almeida ◽  
...  

2020 ◽  
Vol 116 (12) ◽  
pp. 122102 ◽  
Author(s):  
Jiaming Li ◽  
Chenjia Tang ◽  
Peng Du ◽  
Yilan Jiang ◽  
Yong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document