Phosphorus-Vacancy-Related Deep Levels in Gainp Layers Grown by Molecular Beam Epitaxy

1993 ◽  
Vol 325 ◽  
Author(s):  
Z.C. Huang ◽  
C.R. Wie ◽  
J.A. Varriano ◽  
M.W. Koch ◽  
G.W. Wicks

AbstractDeep levels in lattice matched Ga0.51In0.49P/GaAs heterostructure have been investigated by thermal-electric effect spectroscopy(TEES) and temperature dependent conductivity measurements. Four samples were grown by molecular beam epitaxy with various phosphorus (P2) beam equivalent pressure(BEP) of 0.125, 0.5, 2, and 4×10−4 Torr. We report for the first time, to our knowledge, an electrical observation of phosphorus vacancy point defects in the GaInP/GaAs material system. The phosphorus vacancies, Vp. behave as an electron trap which is located at EC−0.28±0.02 eV. We have found that this trap dominates the conduction band conduction when T> 220K, and is responsible for the variable-range hopping conduction when T < 220K. Its concentration decreases with the increasing phosphrous BEP. Successive rapid thermal annealing showed that its concentration increases with the increasing annealing temperature. Another electron trap at EC−0.51eV was also observed only in samples with P2 BEP less than 2×10−4 Torr. Its capture cross section is 4.5×10−15 cm 2 as obtained from the illumination time dependent TEES spectra.

1990 ◽  
Vol 198 ◽  
Author(s):  
Y. Nakata ◽  
Y. Sugiyama ◽  
T. Inata ◽  
O. Ueda ◽  
S. Sasa ◽  
...  

ABSTRACTWe have successfully grown InGaAs/AIAsSb quantum-well (QW) structures lattice-matched to InP by molecular beam epitaxy for the first time. We studied the band-edge discontinuity and the interface abruptness of these heterostructures. A cross-sectional lattice image of InGaAs/AlAsSb QWs taken along the [100] axis showed atomically smooth heterointerfaces. The photoluminescence (PL) peak energy of the 20-nm-thick InGaAs well (0.758 eV) was lower than that of InGaAs bulk (0.799 eV), indicating that the InGaAs/AlAsSb system has a staggered lineup. The conduction band-edge discontinuity, ΔEc, was evaluated to be 1.74 ± 0.04 eV, which was derived from parameter fitting to the 4.2 K PL peak energy shifts of QWs as a function of InGaAs well width between 2.1 nm and 20 nm. The corresponding valence band-edge discontinuity, ΔEv, was 0.07 ± 0.02 eV. We also fabricated a resonant tunneling barrier structure of InGaAs (4.4 nm)/AlAsSb (2.9 nm), and obtained a very high peak-to-valley current ratio of 15 at 300 K.


1997 ◽  
Vol 468 ◽  
Author(s):  
J. D. Mackenzie ◽  
C. R. Abernathy ◽  
S. J. Pearton ◽  
S. M. Donovan ◽  
U. Hömmerich ◽  
...  

ABSTRACTMetalorganic molecular beam epitaxy has been utilized to incorporate Er into AlGaN materials during growth utilizing elemental and metalorganic sources. Room temperature 1.54 μm photoluminescence was observed from AlN:Er and GaN:Er. Photoluminescence from AlN:Er doped during growth using the elemental source was several times more intense than that observed from implanted material. For the first time, strong room temperature 1.54 μm PL was observed in GaN:Er grown on Si. Temperature-dependent photoluminescence experiments indicated the 1.54 μm intensities were reduced to 60% and 40% for AlN:Er and GaN:Er, respectively, between 15 K and 300 K. The low volatility of Er(III) tris (2,2,6,6 - tetramethyl heptanedionate) and temperature limitations imposed by transport considerations limited maximum doping levels to ∼1017 cm-3 indicating that this precursor is unsuitable for UHV.


1994 ◽  
Vol 340 ◽  
Author(s):  
K. Lu ◽  
P.A. Fisher ◽  
E. Ho ◽  
J.L. House ◽  
G.S. Petrich ◽  
...  

ABSTRACTThe wide bandgap semiconductor ZnSe has been nucleated on epitaxial (In,Ga)P buffer layers (on GaAs substrates) having various In compositions, and hence various lattice constants. The III-V ternary alloy offers a wide range of lattice constants for the heteroepitaxy of a multitude of potential II-VI light emitting devices, such as blue pn injection lasers composed of the (Zn,Mg)(S,Se) material system. Since the II-VI and III-V layers are grown using gas source molecular beam epitaxy in separate dedicated reactors, the technique of amorphous As deposition is employed to passivate the (In,Ga)P surface prior to the ex situ transfer. High resolution double crystal x-ray diffraction measurements on the ZnSe/(In,Ga)P/GaAs heterostructures indicate that for In compositions of 50-52%, the buffer layers with a thickness of 4 μm were only partially relaxed on the GaAs substrates, with the residual mismatch remaining at the ZnSe/III-V heterointerface. The critical thickness of (In,Ga)P, with In concentrations near 52-56%, on GaAs greatly exceeds the predicted critical thickness from either the energy balancing or force balancing model. For an In composition of 56% (and a film thickness of 4 μm), the buffer layers contain an in-plane lattice constant equal to that of ZnSe, and therefore represent the lattice-matched condition, even though the film is not fully relaxed. For (In,Ga)P buffer layers lattice-matched to ZnSe, but mismatched to GaAs, the surface exhibits the expected cross-hatched surface morphology. The occurrence of the cross-hatched surface is significantly alleviated by the addition of a pseudomorphic layer of GaAs positioned between the ZnSe and (In,Ga)P layer.


Author(s):  
А.К. Кавеев ◽  
А.Г Банщиков ◽  
А.Н Терпицкий ◽  
В.А Голяшов ◽  
О.Е Терещенко ◽  
...  

It was shown for the first time that Co subnanometer coaverage, being deposited by molecular beam epitaxy method onto the (0001) surface of the BiSbTeSe2 topological insulator at 330 °C, opens an energy band gap in the spectrum of topological surface states in the region of the Dirac point, with a shift in the position of the Dirac point caused by preliminary deposition of the adsorbate at room temperature. The gap band width is 21 +/- 6 meV. Temperature-dependent measurements in the 15-150 K range did not show any width changes.


1996 ◽  
Vol 450 ◽  
Author(s):  
C. A. Wang ◽  
G. W. Turner ◽  
M. J. Manfra ◽  
H. K. Choi ◽  
D. L. Spears

ABSTRACTGai1−xInxASySb1-y (0.06 < x < 0.18, 0.05 < y < 0.14) epilayers were grown lattice-matched to GaSb substrates by low-pressure organometallic vapor phase epitaxy (OMVPE) using triethylgallium, trimethylindium, tertiarybutylarsine, and trimethylantimony. These epilayers have a mirror-like surface morphology, and exhibit room temperature photoluminescence (PL) with peak emission wavelengths (λP,300K) out to 2.4 μm. 4K PL spectra have a full width at half-maximum of 11 meV or less for λP,4K < 2.1 μm (λP,300K = 2.3 μm). Nominally undoped layers are p-type with typical 300K hole concentration of 9 × 1015 cm−3 and mobility ∼ 450 to 580 cm2/V-s for layers grown at 575°C. Doping studies are reported for the first time for GalnAsSb layers doped n type with diethyltellurium and p type with dimethylzinc. Test diodes of p-GalnAsSb/n-GaSb have an ideality factor that ranges from 1.1 to 1.3. A comparison of electrical, optical, and structural properties of epilayers grown by molecular beam epitaxy indicates OMVPE-grown layers are of comparable quality.


2011 ◽  
Vol 295-297 ◽  
pp. 777-780 ◽  
Author(s):  
M. Ajaz Un Nabi ◽  
M. Imran Arshad ◽  
Adnan Ali ◽  
M. Asghar ◽  
M. A Hasan

In this paper we have investigated the substrate-induced deep level defects in bulk GaN layers grown onp-silicon by molecular beam epitaxy. Representative deep level transient spectroscopy (DLTS) performed on Au-GaN/Si/Al devices displayed only one electron trap E1at 0.23 eV below the conduction band. Owing to out-diffusion mechanism; silicon diffuses into GaN layer from Si substrate maintained at 1050°C, E1level is therefore, attributed to the silicon-related defect. This argument is supported by growth of SiC on Si substrate maintained at 1050°C in MBE chamber using fullerene as a single evaporation source.


1994 ◽  
Vol 65 (22) ◽  
pp. 2848-2850 ◽  
Author(s):  
E. Gombia ◽  
R. Mosca ◽  
A. Bosacchi ◽  
M. Madellaf ◽  
S. Franchi

1998 ◽  
Vol 83 (4) ◽  
pp. 2266-2271 ◽  
Author(s):  
W. J. Keeler ◽  
G. A. Keeler ◽  
D. A. Harrison ◽  
Z. R. Wasilewski

Sign in / Sign up

Export Citation Format

Share Document