Threshold Fluence UV Laser Ablation of Single Crystal Bi2Sr2Ca1Cu2O8: Product Population and Kinetic Energy Distributions of Ejected Ionic Species

1990 ◽  
Vol 201 ◽  
Author(s):  
Lawrence Wiedeman ◽  
Hyun Sook Kim ◽  
Henry Helvajian

AbstractWe have conducted an experiment which measures the product population and kinetic energy (KE) distributions from the UV laser induced decomposition of crystalline Bi2Sr2Ca1Cu2O8. We have measured these distributions at two laser wavelengths 248, 351. At a third wavelength (355 nm) we have measured the photoejected mass spectra from both a single crystal Bi2Sr2Ca1Cu2O8 sample and a polycrystalline Bi2Sr2Ca2Cu3O10 sample. For all the experiments, the laser fluence is maintained near the threshold for ion formation. The laser fluences are well below the level for instigating a laser induced above surface plasma. Our results show that the ejected products are not the consequence of a laser surface evaporation process. We measure a wavelength dependence in the ejected species population distribution and the ejected kinetic energy distribution (< KE > = 5 ± 1 eV.2eV FWHM) is indicative of an electronic excitation process. The measured ion mass spectra show atomic, diatomic (e.g. Sr2+), and oxide (e.g. SrO+, CaO+) species with lesser quantities of the complex oxides (e.g. S2O+). Distinctly absent from the mass spectra are the oxide compounds BiO+, CuO+, and the atomic species O+. Furthermore, the mass spectrum shows that at 248 nm laser excitation, the Bi+ species is the abundant photopro-duct. However, for both the 351 nm and 355 nm excitations, the Sr+ and SrO+ ions are measured as more abundant. Also, comparing the 355 nm laser excitation of the single and polycrystalline samples, there is very little difference in the photoejected species mass spectrum.

2002 ◽  
Vol 197-198 ◽  
pp. 35-40 ◽  
Author(s):  
L.P Cramer ◽  
S.C Langford ◽  
W.P Hess ◽  
J.T Dickinson

1990 ◽  
Vol 191 ◽  
Author(s):  
L. Wiedeman ◽  
H. Helvajian

ABSTRACTWe have conducted two separate experiments in the UV laser ablation of a sintered Yba2Cu3Ox+6wafer. We have measured the photoejected population distributions using selected UV laser wavelengths (4.01, 4.17 and 4.35 eV) near the 4.1 eV optical transition in Yba2Cu3Ox+6 In addition, we have measured the change in the ejected species kinetic energy as a function of the target bulk temperature. All the experiments were conducted at laser fluences well below the plasma formation threshold, and near that for product formation. Our results show that the UV laser ablation, at threshold fluences, proceeds via a nonthermal electronic excitation mechanism.


2013 ◽  
Vol 1538 ◽  
pp. 405-410
Author(s):  
Shaoping Wang ◽  
Aneta Kopec ◽  
Andrew G. Timmerman

ABSTRACTA ZnO single crystal is a native substrate for epitaxial growth of high-quality thin films of ZnO-based Group II-oxides (e.g. ZnO, ZnMgO, ZnCdO) for variety of devices, such as UV and visible-light emitting diodes (LEDs), UV laser diodes and solar-blind UV detectors. Currently, commercially available ZnO single crystal wafers are produced using a hydrothermal technique. The main drawback of hydrothermal growth technique is that the ZnO crystals contain large amounts of alkaline metals, such as Li and K. These alkaline metals are electrically active and hence can be detrimental to device performances. In this paper, results from a recently developed novel growth technique for ZnO single crystal boules are presented. Lithium-free ZnO single crystal boules of up to 1 inch in diameter was demonstrated using the novel technique. Results from crystal growth and materials characterization will be discussed.


1988 ◽  
Vol 43 (12) ◽  
pp. 1151-1153 ◽  
Author(s):  
E. R. Rohwer ◽  
R.C. Beavis ◽  
C. Köster ◽  
J. Lindner ◽  
J. Grotemeyer ◽  
...  

A new ultra fast electron impact (El) ion source is pre­sented that produces a very short, high intensity electron beam, allowing medium resolution mass spectra to be re­corded without pulsing the ion accelerating voltages in a time-of-flight mass spectrometer (TOF-MS). The ion source requires minimum modification of any TOF-MS equipped with an electrostatic ion reflector and UV-laser. El-spectra are presented for comparison with literature spectra.


Author(s):  
Alexander A. Kirillov ◽  
Sergey G. Rubin

Evidence for the primordial black holes (PBH) presence in the early Universe renews permanently. New limits on their mass spectrum challenge existing models of PBH formation. One of the known models is based on the closed walls collapse after the inflationary epoch. Its intrinsic feature is the multiple production of small mass PBH which might contradict observations in the nearest future. We show that the mechanism of walls collapse can be applied to produce substantially different PBH mass spectra if one takes into account the classical motion of scalar fields together with their quantum fluctuations at the inflationary stage. Analytical formulas have been developed that contain both quantum and classical contributions.


2009 ◽  
Vol 2009 ◽  
pp. 1-18 ◽  
Author(s):  
Hebe Saraví Cisneros ◽  
Sergio Laurella ◽  
Danila L. Ruiz ◽  
Agustín Ponzinibbio ◽  
Patricia E. Allegretti ◽  
...  

Mass spectrometry is used to evaluate the occurrence of the nitrile-ketenimine tautomerism. Mass spectra of two differently substituted nitriles, ethyl-4,4-dicyano-3-methyl-3-butenoate and diethyl-2-cyano-3-methyl-2-pentenodiate are examined looking for common mass spectral behaviors. Ion fragmentation assignments for specific tautomers allow to predict the presence of the corresponding structures. Additionally, the mass spectrum and nuclear magnetic resonance spectra of ethyl-4,4-dicyano-2,2-diethyl-3-methyl-3-butenoate and that of the corresponding amination product support the occurrence of the ketenimine tautomer in the equilibrium.


Sign in / Sign up

Export Citation Format

Share Document