Study of As and P Incorporation Behavior in GaAsP by Gas-Source Molecular-Beam Epitaxy

1991 ◽  
Vol 222 ◽  
Author(s):  
B. W. Liang ◽  
H. Q. Hou ◽  
C. W. Tu

ABSTRACTA simple kinetic model has been developed to explain the agreement between in situ and ex situ determination of phosphorus composition in GaAs1−xPx (x < 0.4) epilayers grown on GaAs (001) by gas-source molecular-beam epitaxy (GSMBE). The in situ determination is by monitoring the intensity oscillations of reflection high-energy-electron diffraction during group-V-limited growth, and the ex situ determination is by x-ray rocking curve measurement of GaAs1−xPx/GaAs strained-layer superlattices grown under group-III-limited growth condition.

1990 ◽  
Vol 216 ◽  
Author(s):  
T. P. Chin ◽  
B. W. Liang ◽  
H. Q. Hou ◽  
C. W. Tu

ABSTRACTInP and InAs (100) were grown by gas-source molecular-beam epitaxy (GSMBE) with arsine, phosphine, and elemental indium. Reflection high-energy-electron diffraction (RHEED) was used to monitor surface reconstructions and growth rates. (2×4) to (2×1) transition was observed on InP (100) as phosphine flow rate increased. (4×2) and (2×4) patterns were observed for In-stabilized and As-stabilized InAs surfaces, respectively. Both group-V and group-rn-induced RHEED oscillations were observed. The group-V surface desorption activation energy were measured to be 0.61 eV for InP and 0.19 eV for InAs. By this growth rate study, we are able to establish a precise control of V/HII atomic ratios in GSMBE of InP and InAs.


1995 ◽  
Vol 10 (8) ◽  
pp. 1942-1952 ◽  
Author(s):  
A. Guivarc'h ◽  
A. Le Corre ◽  
P. Auvray ◽  
B. Guenais ◽  
J. Caulet ◽  
...  

This paper deals with the growth by molecular beam epitaxy of semimetallic (rare-earth group V element) compounds on III-V semiconductors. Results are presented, first on the Er-Ga-As and Er-Ga-Sb ternary phase diagrams, second on the lattice-mismatched ErAs/GaAs (δa ≈ +1.6%), YbAs/GaAs (δa/a = +0.8%), and ErSb/GaSb (δa/a ≈ +0.2%) heterostructures, and third on the lattice-matched Sc0.3Er0.7As/GaAs and Sc0.2Yb0.8As/GaAs systems (δa/a < 0.05%). Finally the growth of YbSb2 on GaSb(001) is reported. The studies made in situ by reflection high-energy electron diffraction (RHEED) and x-ray photoelectron diffraction and ex situ by x-ray diffraction, transmission electron microscopy, He+ Rutherford backscattering, and photoelectron spectroscopy are presented. We discuss the atomic registry of the epitaxial layers with respect to the substrates, the appearance of a mosaic effect in lattice-mismatched structures, and the optical and electrical properties of the semimetallic films. The problems encountered for III-V overgrowth on these compounds (lack of wetting and symmetry-related defects) are commented on, and we underline the interest of compounds as YbSb2 which avoid the appearance of inversion defects in the GaSb overlayers.


MRS Advances ◽  
2017 ◽  
Vol 2 (3) ◽  
pp. 189-194
Author(s):  
Franck Natali ◽  
Joe Trodahl ◽  
Stéphane Vézian ◽  
Antoine Traverson ◽  
Benjamin Damilano ◽  
...  

ABSTRACTGdN/SmN based superlattices have been grown by molecular beam epitaxy. In-situ reflection high energy electron diffraction was used to evaluate the evolution of the epitaxial growth and the structural properties were assessed by ex-situ X-ray diffraction. Hall Effect and resistivity measurements as a function of the temperature establish that the superlattices are heavily n-type doped semiconductors and the electrical conduction resides in both REN layers, SmN and GdN.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


2000 ◽  
Vol 639 ◽  
Author(s):  
Ryuhei Kimura ◽  
Kiyoshi Takahashi ◽  
H. T. Grahn

ABSTRACTAn investigation of the growth mechanism for RF-plasma assisted molecular beam epitaxy of cubic GaN films using a nitrided AlGaAs buffer layer was carried out by in-situ reflection high energy electron diffraction (RHEED) and high resolution X-ray diffraction (HRXRD). It was found that hexagonal GaN nuclei grow on (1, 1, 1) facets during nitridation of the AlGaAs buffer layer, but a highly pure, cubic-phase GaN epilayer was grown on the nitrided AlGaAs buffer layer.


1999 ◽  
Vol 567 ◽  
Author(s):  
Z. Yu ◽  
R. Droopad ◽  
J. Ramdani ◽  
J.A. Curless ◽  
C.D. Overgaard ◽  
...  

ABSTRACTSingle crystalline perovskite oxides such as SrTiO3 (STO) are highly desirable for future generation ULSI applications. Over the past three decades, development of crystalline oxides on silicon has been a great technological challenge as an amorphous silicon oxide layer forms readily on the Si surface when exposed to oxygen preventing the intended oxide heteroepitaxy on Si substrate. Recently, we have successfully grown epitaxial STO thin films on Si(001) surface by using molecular beam epitaxy (MBE) method. Properties of the STO films on Si have been characterized using a variety of techniques including in-situ reflection high energy electron diffraction (RHEED), ex-situ X-ray diffraction (XRD), spectroscopic ellipsometry (SE), Auger electron spectroscopy (AES) and atomic force microscopy (AFM). The STO films grown on Si(001) substrate show bright and streaky RHEED patterns indicating coherent two-dimensional epitaxial oxide film growth with its unit cell rotated 450 with respect to the underlying Si unit cell. RHEED and XRD data confirm the single crystalline nature and (001) orientation of the STO films. An X-ray pole figure indicates the in-plane orientation relationship as STO[100]//Si[110] and STO(001)// Si(001). The STO surface is atomically smooth with AFM rms roughness of 1.2 AÅ. The leakage current density is measured to be in the low 10−9 A/cm2 range at 1 V, after a brief post-growth anneal in O2. An interface state density Dit = 4.6 × 1011 eV−1 cm−2 is inferred from the high-frequency and quasi-static C-V characteristics. The effective oxide thickness for a 200 Å STO film is around 30 Å and is not sensitive to post-growth anneal in O2 at 500-700°C. These STO films are also robust against forming gas anneal. Finally, STO MOSFET structures have been fabricated and tested. An extrinsic carrier mobility value of 66 cm2 V−11 s−1 is obtained for an STO PMOS device with a 2 μm effective gate length.


1999 ◽  
Vol 4 (S1) ◽  
pp. 858-863
Author(s):  
Huajie Chen ◽  
A. R. Smith ◽  
R. M. Feenstra ◽  
D. W. Greve ◽  
J. E. Northrup

InGaN alloys with indium compositions ranging from 0–40% have been grown by molecular beam epitaxy. The dependence of the indium incorporation on growth temperature and group III/group V ratio has been studied. Scanning tunneling microscopy images, interpreted using first-principles theoretical computations, show that there is strong indium surface segregation on InGaN. Based on this surface segregation, a qualitative model is proposed to explain the observed indium incorporation dependence on the growth parameters.


Sign in / Sign up

Export Citation Format

Share Document