scholarly journals Plasma Immersion Surface Modification With Metal Ion Plasma

1991 ◽  
Vol 223 ◽  
Author(s):  
I. G. ◽  
X. Godechot ◽  
K. M. Yu

ABSTRACTWe describe here a novel technique for surface modification in which a metal plasma is employed and by which various blends of plasma deposition and ion implantation can be obtained. The new technique is a variation of the plasma immersion technique described by Conrad and co-workers. When a substrate is immersed in a metal plasma, the plasma that condenses on the substrate remains there as a film, and when the substrate is then implanted, qualitatively different processes can follow, including ‘conventional’ high energy ion implantation, recoil implantation, ion beam mixing, ion beam assisted deposition, and metallic thin film and multilayer fabrication with or without species mixing. Multiple metal plasma guns can be used with different metal ion species, films can be bonded to the substrate through ion beam mixing at the interface, and multilayer structures can be tailored with graded or abrupt interfaces. We have fabricated several different kinds of modified surface layers in this way.

1995 ◽  
Vol 396 ◽  
Author(s):  
I.G. Brown ◽  
A. Anders ◽  
S. Anders ◽  
M.R. Dickinson ◽  
R.A. MacGill ◽  
...  

AbstractIon implantation by intense beams of metal ions can be accomplished using the dense metal plasma formed in a vacuum arc discharge embodied either in a vacuum arc ion source or in a ‘metal plasma immersion’ configuration. In the former case high energy metal ion beams are formed and implantation is done in a more-or-less conventional way, and in the latter case the substrate is immersed in the plasma and repetitively pulse-biased so as to accelerate the ions at the high voltage plasma sheath formed at the substrate. A number of advances have been made in the last few years, both in plasma technology and in the surface modification procedures, that enhance the effectiveness and versatility of the methods, including for example: controlled increase of the ion charge states produced; operation in a dual metal-gaseous ion species mode; very large area beam formation; macroparticle filtering; and the development of processing regimes for optimizing adhesion, morphology and structure. These complementary ion processing techniques provide the plasma tools for doing ion surface modification over a very wide parameter regime, from ‘pure’ ion implantation at energies approaching the MeV level, through ion mixing at energies in the ∼1 to ∼100 keV range, to IBAD-like processing at energies from a few tens of eV to a few keV. Here we review the methods, describe a number of recent developments, and outline some of the surface modification applications to which the methods have been put.


1985 ◽  
Vol 51 ◽  
Author(s):  
K. L. More ◽  
R. F. Davis ◽  
B. R. Appleton ◽  
D. Lowndes ◽  
P. Smith

ABSTRACTPulsed laser annealing and ion beam mixing have been used as surface modification techniques to enhance the physical properties of polycrystalline α-SiC. Thin Ni overlayers (20 nm - 100 nm) were evaporated onto the SiC surface. The specimens were subsequently irradiated with pulses of a ruby or krypton fluoride (KrF) excimer laser or bombarded with high energy Xe+ or Si+ ions. Both processes are non-equilibrium methods and each has been shown to induce unique microstructural changes at the SiC surface which are not attainable by conventional thermal treatments. Under particular (and optimum) processing conditions, these changes considerably increased the mechanical properties of the SiC; following laser irradiation, the fracture strength of the SiC was increased by as much as 50%, but after ion beam mixing, no strength increase was observed.High resolution cross-section transmission electron microscopy (X-TEM), scanning electron microscopy (SEM), and Rutherford backscattering techniques were used to characterize the extent of mixing between the Ni and the SiC as a result of the surface modification.


1991 ◽  
Vol 223 ◽  
Author(s):  
Meng-Hsiung Kiang ◽  
Carey A. Pico ◽  
Michael A. Lieberman ◽  
Nathan W. Cheung ◽  
X. Y. Qian ◽  
...  

ABSTRACTSelective deposition of copper in SiO2 trenches has been carried out using plasma immersion ion implantation and electroless Cu plating. To form the seed layer for electroless Cu plating on SiO2 , sputtered Pd and Si atoms were partially ionized by the Ar plasma and then deposited at bottoms of SiO2 trenches; Ar ions also assisted the ion beam mixing of the deposited Pd/Si films with the SiO2 substrate. We found a threshold Pd dose of 2–3×1014/cm2 is required to initiate the electroless plating of Cu. By controlling the Pd dose and the tapering angle of the SiO2 trench sidewalls, 1 μm wide Cu filled lines with flat surfaces suitable for planarized multilevel metallization were successfully fabricated.


Author(s):  
A. K. Rai ◽  
R. S. Bhattacharya ◽  
M. H. Rashid

Ion beam mixing has recently been found to be an effective method of producing amorphous alloys in the binary metal systems where the two original constituent metals are of different crystal structure. The mechanism of ion beam mixing are not well understood yet. Several mechanisms have been proposed to account for the observed mixing phenomena. The first mechanism is enhanced diffusion due to defects created by the incoming ions. Second is the cascade mixing mechanism for which the kinematicel collisional models exist in the literature. Third mechanism is thermal spikes. In the present work we have studied the mixing efficiency and ion beam induced amorphisation of Ni-Ti system under high energy ion bombardment and the results are compared with collisional models. We have employed plan and x-sectional veiw TEM and RBS techniques in the present work.


Author(s):  
C.H. Wang ◽  
S.P. Chang ◽  
C.F. Chang ◽  
J.Y. Chiou

Abstract Focused ion beam (FIB) is a popular tool for physical failure analysis (FA), especially for circuit repair. FIB is especially useful on advanced technology where the FIB is used to modify the circuit for new layout verification or electrical measurement. The samples are prepared till inter-metal dielectric (IMD), then a hole is dug or a metal is deposited or oxide is deposited by FIB. A common assumption is made that metal under oxide can not be seen by FIB. But a metal ion image is desired for further action. Dual beam, FIB and Scanning Electron Microscope (SEM), tools have a special advantage. When switching back and forth from SEM to FIB the observation has been made that the metal lines can be imaged. The details of this technique will be discussed below.


1996 ◽  
Vol 83 (1-3) ◽  
pp. 280-283 ◽  
Author(s):  
Tonghe Zhang ◽  
Xiaoyan Wang ◽  
Hong Liang ◽  
Huixing Zhang ◽  
Gu Zhou ◽  
...  

2022 ◽  
Vol 131 (1) ◽  
pp. 014901
Author(s):  
Byeong Jun Cha ◽  
Woo Jun Byeon ◽  
Chang Min Choi ◽  
Boo Ki Min ◽  
Jinwan Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document