Low Temperature Synthesis of Carbide Thin Films by Pulsed Laser Deposition (Pld)
AbstractThin films of titanium carbide (TiC) and boron carbide (B4C) were grown by excimer pulsed laser deposition (PLD) at room temperature (RT) and 300°C. Films were deposited using the output of an excimer laser operating with KrF gas (λ = 248 nm, 15 ns pulse duration) to ablate hot-pressed targets. Film chemistry, morphology, and crystallinity were investigated. Stoichiometric, crystalline TiC films were grown on 440C stainless steel and NaCl substrates at room temperature and at 300°C. The films grown on NaCI were nanocrystallinc, cubic TiC, with a grain size ranging between 2 and 10 nm in diameter. Boron carbide films were grown on silicon {100} substrates at room temperature and at 300°C. Film chemistry and stoichiometry duplicated that of the B4C target, which contained B4C and a mixed C-B-O-N binder phase. SEM analysis indicated that the morphology of the films was uniform, nonporous, and fine-grained. The films exhibited good adhesion and wear resistance, based on friction and wear data collected with a ball-on-disc tribometer.