Chemical Migration by Contact Metamorphism between Pegmatite and Country Rocks: Natural Analogs for Radionuclide Migration

1983 ◽  
Vol 26 ◽  
Author(s):  
J. C. Laul ◽  
R. J. Walker ◽  
C. K. Shearer ◽  
J. J. Papike ◽  
S. B. Simon

ABSTRACTComparison of trace element signatures of country rocks as a function of distance from the contact with two pegmatites, Tin Mountain and Etta, in the Black Hills of South Dakota, suggests that some elements such as K, Li, Rb, Cs, As, Sb, Zn and Pb, have migrated to distances of 4 to 40 meters during contact metamorphism. The relative degree of migration varies depending on the element. On the other hand, there is virtually no migration of rare earth elements (REE), Al, Sc, Cr, Hf, U, and Th. Biotite and muscovite are effective trace element traps for Li, Rb and Cs. Biotite has a greater affinity for Rb, Cs and Li than muscovite.

2019 ◽  
Vol 269 ◽  
pp. 07003 ◽  
Author(s):  
Badrul Munir ◽  
Sulaksana Permana ◽  
Anggita Amilia ◽  
Ahmad Maksum ◽  
Johny W Soedarsono

The global demand for rare earth elements have increased dramatically for the last decade as more and more devices use rare earth elements as key for their advanced properties. The paper explores the possibilty to recover cerium (Ce) and lanthanum (La) in Bangka tin slag (BTS) involving roasting at 900°C, water-quenching, and two leachings, 8M NaOH leaching and HClO4 leaching at concentrations of 0.1M, 0.4M, and 0.8M. HClO4 leaching causes Ce and La contents to decrease to 0.47% for 0.1M, 0.51% for 0.4M, and 0.59% for 0.8M. On the other hand, 8M NaOH optimizes cerium and lanthanum contents up to 4.35% and 1.45%, respectively.


2019 ◽  
Author(s):  
Stephan R. Hlohowskyj ◽  
◽  
Mona-Liza C. Sirbescu ◽  
James J. Student ◽  
Niels Hulsbosch ◽  
...  

Author(s):  
Le Zhang ◽  
Jia-Lin Wu ◽  
Yanqiang Zhang ◽  
Ya-Nan Yang ◽  
Pengli He ◽  
...  

Titanite is a widespread accessory nesosilicate with high trace-element contents including rare-earth elements, Th, and U, and is thus suitable for in situ isotopic and trace-element analyses and U–Pb dating....


2019 ◽  
Vol 56 (7) ◽  
pp. 693-714 ◽  
Author(s):  
David J. Good ◽  
Peter C. Lightfoot

A diverse suite of tholeiitic to alkaline basalt and gabbroic intrusions located in the Coldwell Complex on the northern margin of the Midcontinent Rift exhibit unusual trace element signatures that show enriched large ion lithophile elements and light rare earth elements with negative Nb and Zr anomalies. These features are not typical of magmas derived by partial melting within or above a rising mantle plume, as might be expected in an early Midcontinent Rift magmatic event. In this paper, we provide a detailed geochemical study of a 500 m thick sequence of metabasalt that represents the earliest stage of magmatism in the Coldwell Complex. We show that contamination or crystallization processes or subsequent metasomatism cannot explain the trace element variations. Instead, we propose partial melting in a metasomatized Subcontinental Lithospheric Mantle source to explain the decoupled behavior of large ion lithophile elements from light rare earth elements and heavy rare earth elements and rare earth elements from high field strength elements and the enriched Nd isotope signature of metabasalt. Similar features occur in unit 5b of the Mamainse Point Volcanic Group located at the northern margin of the Rift. An objective of this paper is to relate Two Duck Lake gabbro, host rock for low-sulfur, high precious metal sulfide mineralization at the Marathon deposit, to the metabasalt sequence. The excellent match of trace element abundances in Two Duck Lake gabbro to metabasalt unit 3 confirms an early Coldwell Complex age for metabasalt and a Subcontinental Lithospheric Mantle source for Cu – platinum group element mineralized gabbros.


1996 ◽  
Vol 81 (9-10) ◽  
pp. 1195-1207 ◽  
Author(s):  
Craig S. Schwandt ◽  
James J. Papike ◽  
Charles K. Shearer

2009 ◽  
Vol 15 (3) ◽  
pp. 222-230 ◽  
Author(s):  
Colin M. MacRae ◽  
Nicholas C. Wilson ◽  
Joel Brugger

AbstractA method for the analysis of cathodoluminescence spectra is described that enables quantitative trace-element-level distributions to be mapped within minerals and materials. Cathodoluminescence intensities for a number of rare earth elements are determined by Gaussian peak fitting, and these intensities show positive correlation with independently measured concentrations down to parts per million levels. The ability to quantify cathodoluminescence spectra provides a powerful tool to determine both trace element abundances and charge state, while major elemental levels can be determined using more traditional X-ray spectrometry. To illustrate the approach, a scheelite from Kalgoorlie, Western Australia, is hyperspectrally mapped and the cathodoluminescence is calibrated against microanalyses collected using a laser ablation inductively coupled plasma mass spectrometer. Trace element maps show micron scale zoning for the rare earth elements Sm3+, Dy3+, Er3+, and Eu3+/Eu2+. The distribution of Eu2+/Eu3+ suggests that both valences of Eu have been preserved in the scheelite since its crystallization 1.63 billion years ago.


2017 ◽  
Vol 262 ◽  
pp. 299-302
Author(s):  
Ivan Nancucheo ◽  
D. Barrie Johnson ◽  
Manoel Lopes ◽  
Guilherme Oliveira

Lateritic deposits containing rare earth elements (REE) are important resources in Brazil, where monazite is the main REE-bearing mineral and is frequently associated with iron hydroxy-oxides and quartz. In order to recover valuable metals such as REE and uranium, experiments were carried out under reductive mineral dissolution using Acidithiobacillus species. In terms of phosphate, aerobic reductive dissolution at pH 0.9 using A. thiooxidans extracted about 35% of that present in the ore which is and indicator of the dissolution of monazite. Although only ~9% of the cerium and 5% of the lanthanum were extracted, ~72% of the uranium was solubilized, indicating that it was more susceptible to extraction by reductive dissolution than the other two REE.


1990 ◽  
Vol 27 (1) ◽  
pp. 57-71 ◽  
Author(s):  
D. C. Gosselin ◽  
J. J. Papike ◽  
C. K. Shearer ◽  
Z. E. Peterman ◽  
J. C. Laul

The Little Elk Granite (2549 Ma) and granite at Bear Mountain (BMG) (~2.5 Ga) of the Black Hills formed as a result of a collisional event along the eastern margin of the Wyoming Province during the late Archean. Geochemical modelling and Nd isotopic data indicate that the Little Elk Granite was generated by the partial melting of a slightly enriched (εNd = −1.07 to −3.69) granodioritic source that had a crustal residence time of at least 190 Ma. The medium-grained to pegmatitic, peraluminous, leucocratic BMG was produced by melting a long-lived (>600 Ma), compositionally variable, enriched (εNd = −7.6 to −12.3) crustal source. This produced a volatile-rich, rare-earth-element-poor magma that experienced crystal–melt–volatile fractionation, which resulted in a lithologically complex granite.The production of volatile-rich granites, such as the BMG and the younger Harney Peak Granite (1715 Ma), is a function of the depositional and post-depositional tectonic environment of the sedimentary source rock. These environments control protolith composition and the occurrence of dehydration and melting reactions that are necessary for the generation of these volatile-rich leucocratic granites. These types of granites are commonly related to former continental–continental accretionary boundaries, and therefore their occurrence may be used as signatures of ancient continental suture zones.


Sign in / Sign up

Export Citation Format

Share Document