Geochemistry and origin of Archean granites from the Black Hills, South Dakota

1990 ◽  
Vol 27 (1) ◽  
pp. 57-71 ◽  
Author(s):  
D. C. Gosselin ◽  
J. J. Papike ◽  
C. K. Shearer ◽  
Z. E. Peterman ◽  
J. C. Laul

The Little Elk Granite (2549 Ma) and granite at Bear Mountain (BMG) (~2.5 Ga) of the Black Hills formed as a result of a collisional event along the eastern margin of the Wyoming Province during the late Archean. Geochemical modelling and Nd isotopic data indicate that the Little Elk Granite was generated by the partial melting of a slightly enriched (εNd = −1.07 to −3.69) granodioritic source that had a crustal residence time of at least 190 Ma. The medium-grained to pegmatitic, peraluminous, leucocratic BMG was produced by melting a long-lived (>600 Ma), compositionally variable, enriched (εNd = −7.6 to −12.3) crustal source. This produced a volatile-rich, rare-earth-element-poor magma that experienced crystal–melt–volatile fractionation, which resulted in a lithologically complex granite.The production of volatile-rich granites, such as the BMG and the younger Harney Peak Granite (1715 Ma), is a function of the depositional and post-depositional tectonic environment of the sedimentary source rock. These environments control protolith composition and the occurrence of dehydration and melting reactions that are necessary for the generation of these volatile-rich leucocratic granites. These types of granites are commonly related to former continental–continental accretionary boundaries, and therefore their occurrence may be used as signatures of ancient continental suture zones.

2019 ◽  
Vol 157 (2) ◽  
pp. 173-200
Author(s):  
Wei Chen ◽  
Xinbiao Lü ◽  
Xiaofeng Cao ◽  
Wenjia Ai

AbstractIn the past ten years, a great deal of geological study has been reported on the magmatic rocks exposed in the central and western region of the Kuluketage Block, while similar research in the eastern region has rarely been reported. In this paper, we report zircon U–Pb geochronological, zircon Lu–Hf isotopic, whole-rock elemental and Sr–Nd–Pb isotopic data for the Dapingliang intermediate-acid intrusive rocks in the eastern Kuluketage Block, in order to evaluate its petrogenesis and tectonic significance. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating provided a weighted mean 206Pb/238U age of 735 ± 3 Ma for the albitophyre (D1), 717 ± 2 Ma for the granite porphyry (D2) and 721 ± 1 Ma for the diorite porphyrite (D3). Geochemical analyses reveal that D1 and D2 belong to Na-rich alkaline A-type granites, and D3 shows the features of high-K calc-alkaline I-type granite. D1 and D2 are characterized by light rare earth element (LREE) enrichment and relative depletion of high field strength element (HFSE), with relatively flat heavy rare earth element (HREE) patterns and obviously negative Eu anomalies. D3 is characterized by the enrichment of LREE and depletion of HFSE, with negative slope HREE patterns and slightly negative Eu anomalies. In tectonic discrimination diagrams, D1 and D2 fall in the within-plate granite (WPG) field, indicating a rift setting. Although D3 falls within the volcanic arc granite (VAG) field, it most likely formed in a rift setting, as inferred from its petrology, Sr–Nd–Hf isotopes and regional tectonic evolution. Based on pronounced εNd(t), εHf(t), Pb isotopic data, TDM2 and high (87Sr/86Sr)i and elemental compositions, D1 was derived from the partial melting of basement amphibolites of the old lower crust. D2 originated from a mixture of the old lower crust and depleted mantle-derived magmas and was dominated by partial melting of the basement amphibolites of the lower crust. D3 could have been formed by partial melting of K-rich hornblende in the lower crust. Combining previous studies, we think that the c. 745–710 Ma magmatic rocks were formed in a continental rift setting. A partial melting scheme, triggered by underplating of mantle plume-derived magmas, is proposed to interpret the formation of c. 745–710 Ma A-type and I-type granitoids, mantle-derived mafic dykes, bimodal intrusive rocks, adakitic granites and volcanic rocks. These magmatic activities were probably a reflection of the break-up of the Rodinia supercontinent.Highlights(1)Circa 720 Ma magmatism in the eastern Kuluketage Block.(2)Na-rich granite was derived from partial melting of basement amphibolites.(3)The c. 745–710 Ma magmatic rocks were formed in a continental rift setting.(4)The underplating of mantle plume-derived magmas is proposed.


2003 ◽  
Vol 40 (8) ◽  
pp. 1027-1051 ◽  
Author(s):  
D Canil ◽  
D J Schulze ◽  
D Hall ◽  
B C Hearn Jr. ◽  
S M Milliken

This study presents major and trace element data for 243 mantle garnet xenocrysts from six kimberlites in parts of western North America. The geochemical data for the garnet xenocrysts are used to infer the composition, thickness, and tectonothermal affinity of the mantle lithosphere beneath western Laurentia at the time of kimberlite eruption. The garnets record temperatures between 800 and 1450°C using Ni-in-garnet thermometry and represent mainly lherzolitic mantle lithosphere sampled over an interval from about 110–260 km depth. Garnets with sinuous rare-earth element patterns, high Sr, and high Sc/V occur mainly at shallow depths and occur almost exclusively in kimberlites interpreted to have sampled Archean mantle lithosphere beneath the Wyoming Province in Laurentia, and are notably absent in garnets from kimberlites erupting through the Proterozoic Yavapai Mazatzal and Trans-Hudson provinces. The similarities in depths of equilibration, but differing geochemical patterns in garnets from the Cross kimberlite (southeastern British Columbia) compared to kimberlites in the Wyoming Province argue for post-Archean replacement and (or) modification of mantle beneath the Archean Hearne Province. Convective removal of mantle lithosphere beneath the Archean Hearne Province in a "tectonic vise" during the Proterozoic terminal collisions that formed Laurentia either did not occur, or was followed by replacement of thick mantle lithosphere that was sampled by kimberlite in the Triassic, and is still observed there seismically today.


1996 ◽  
Vol 101 (B5) ◽  
pp. 11815-11829 ◽  
Author(s):  
Mark D. Feigenson ◽  
Lina C. Patino ◽  
Michael J. Carr

Author(s):  
Thomas Gaetjens ◽  
Haijun Liang ◽  
Patrick Zhang ◽  
Ryan Moser ◽  
Haley Thomasson ◽  
...  

Abstract Frequently optimizations of chemical processes are presented in terms of the maximization of fractional conversion, but the primary concern when implementing a process is much more likely to be the economic viability. These are distinct optima that tend to occur at very different points. It was the purpose of this paper to integrate leaching experimental data with cost analysis to arrive upon economically optimized leaching conditions for the recovery of rare earth elements from phosphogypsum, a water phosphate byproduct. The variables under consideration were the number of leaching reactors and the residence time of each reactor. The modeling results indicated that the optimum residence time was 270 minutes and that the optimum number of stages was one.


1983 ◽  
Vol 26 ◽  
Author(s):  
J. C. Laul ◽  
R. J. Walker ◽  
C. K. Shearer ◽  
J. J. Papike ◽  
S. B. Simon

ABSTRACTComparison of trace element signatures of country rocks as a function of distance from the contact with two pegmatites, Tin Mountain and Etta, in the Black Hills of South Dakota, suggests that some elements such as K, Li, Rb, Cs, As, Sb, Zn and Pb, have migrated to distances of 4 to 40 meters during contact metamorphism. The relative degree of migration varies depending on the element. On the other hand, there is virtually no migration of rare earth elements (REE), Al, Sc, Cr, Hf, U, and Th. Biotite and muscovite are effective trace element traps for Li, Rb and Cs. Biotite has a greater affinity for Rb, Cs and Li than muscovite.


2006 ◽  
Vol 43 (10) ◽  
pp. 1419-1444 ◽  
Author(s):  
Carol D Frost ◽  
B Ronald Frost ◽  
Robert Kirkwood ◽  
Kevin R Chamberlain

The 2.95–2.82 Ga quartzofeldspathic gneisses and granitoids in the Bighorn, western Owl Creek, and northeastern Wind River uplifts in the central Wyoming Province include low-K tonalite–trondhjemite–granodiorite (TTG) and high-K granodiorite–granite (GG) rocks. Both types of granitoids were intruded contemporaneously, although TTGs are more abundant in the older gneisses. The TTG suite consists of calcic to marginally calc-alkalic rocks that straddle the boundaries between metaluminous and peraluminous and between ferroan and magnesian compositions. Rare-earth element (REE) patterns of these rocks may be highly fractionated with low heavy rare-earth element (HREE) contents and modest to absent Eu anomalies but may also be less strongly HREE depleted. These rocks do not represent first-generation continental crust: most have unradiogenic Nd and radiogenic 207Pb/204Pb isotopic compositions that require the incorporation of isotopically evolved sources. The GG suite has compositions that are transitional between Archean TTG and modern, continental margin calc-alkalic rocks. The GG suite is characterized by higher alkali contents relative to CaO than the TTG suite and higher K/Na ratios but exhibits a similar range in REE patterns. The Nd, Sr, and Pb isotopic compositions of the GG suite are slightly less variable but lie within the range of those of the TTG suite. We interpret them as having a source similar to that of the TTG, perhaps forming by partial melting of preexisting TTG. The shift from TTG-dominated to GG-dominated continental crust was a gradual transition that took place over several hundred million years. Clearly subduction-related calc-alkalic magmatism is not recognized in the Wyoming Province prior to 2.67 Ga.


2019 ◽  
pp. 87-114
Author(s):  
A. V. Moiseev ◽  
M. V. Luchitskaya ◽  
I. V. Gul’pa ◽  
V. B. Khubanov ◽  
B. V. Belyatsky

Vendian and Permian-Triassic plagiogranite magmatism is distinguished for Ust’-Belsky and Algansky terranes of West-Koryak fold system. U–Pb zircon ages from Vendian and Permian-Triassic plagiogranites are 556 ± 3 Ma (SIMS), 538 ± 7 Ma (LA–ICP–MS) and 235 ± 2 Ma (SIMS) consequently. It is revealed, that Vendian and Permian-Triassic plagiogranites are mainly low-K and low-Al. Sr–Nd isotopy and rare-earth element patterns allow supposing their formation by partial melting of primarily mantle substrate or by fractional crystallization of basic magma. Vendian plagiogranites formed within active margin in ensimatic island arc simultaneously with deposition of lower part of volcanic-sedimentary complex of Otrozhninskaya slice. We suggest the Permian-Triassic plagiogranites were being formed within the limits of Ust’-Belsky segment of Koni-Taigonos arc during partial melting of melanocratic ophiolite material build up as fragments in accretionary structure of that arc or by fractional crystallization of basic magmas melted from the similar substrate.


2021 ◽  
Vol 58 (1) ◽  
pp. 27-37
Author(s):  
Jeffrey W. Bader

The North Owl Creek fault is an E–W-striking, basement-rooted Laramide structure located in the Owl Creek Mountains of north-central Wyoming that likely has Precambrian origins. It is defined by a rectilinear zone of deformation that extends eastward into the subsurface where it is postulated to intersect the Kaycee fault zone of the western Powder River Basin, and perhaps extends into western South Dakota along the Dewey fault zone. Several localized basement-rooted wrench zones have been identified in the foreland of the North American Cordillera; however, identification of more regional zones has been minimal. The presence of larger fault zones that cut nearly the entire Archean basement across the Wyoming Province has implications for Precambrian plate tectonics and structural inheritance in foreland basins such as the Powder River. This paper presents results of a structural analysis that tests this hypothesis.


Sign in / Sign up

Export Citation Format

Share Document