Measurement Of Precipitate Nucleation Times In Molten Metals By Pulsed Surface Melting

1983 ◽  
Vol 28 ◽  
Author(s):  
D.M. Follstaedt ◽  
S.T. Picraux ◽  
P.S. Peercy ◽  
J.A. Knapp ◽  
W.R. Wampler

ABSTRACTThe short melt duration resulting from pulsed laser and electron beam surface melting of ion-implanted metals has been used to measure precipitate nucleation times of compounds within the melt. We have examined the phases present in several alloy systems with TEM and used calculated thermal histories to place limits on the time required for nucleation of the following compounds: AlSb (5–25 ns), Al3Ni (≳ 750 ns)Al3Ni2 (≳ 950 ns) and AlNi (< 1000 ns), all in molten Al, and TiC (≲ 100 ns) in molten Fe. The compounds observed after our rapid solidification have relatively simple, cubic structures and melt congruently, while those predicted but not observed have more complex structures and decompose peritectically.

2008 ◽  
Vol 14 (S3) ◽  
pp. 53-56
Author(s):  
S.A.S. Rodrigues ◽  
A. Khodorov ◽  
M. Pereira ◽  
M.J.M. Gomes

Ferroelectric films with a composition gradient have attracted much attention because of their large polarization offset present in the hysteresis loops. Lead Zirconate Titanate (PZT) films were deposited on Pt/TiO2/SiO2/Si substrates by Pulsed Laser Deposition (PLD) technique, using a Nd:YAG laser (Surelite) with a source pulse wavelength of 1064 nm and duration of 5-7 ns delivering an energy of 320 mJ per pulse and a laser fluence energy about 20 J/cm2. The film growth is performed in O2 atmosphere (0,40 mbar) while the substrate is heated at 600°C by a quartz lamp. Starting from ceramic targets based on PZT compositions and containing 5% mol. of excess of PbO to compensate the lead evaporation during heat treatment, three films with different compositions Zr/Ti 55/45, 65/35 and 92/8, and two types of complex structures were produced. These complex structures are in the case of the up-graded structure (UpG), with PZT (92/8) at the bottom, PZT (65/35) on middle and PZT (55/45) on the top, and for down-graded (DoG) one, that order is reversed.


1987 ◽  
Vol 2 (5) ◽  
pp. 648-680 ◽  
Author(s):  
D. H. Lowndes ◽  
S. J. Pennycook ◽  
G. E. Jellison ◽  
S. P. Withrow ◽  
D. N. Mashburn

Nanosecond resolution time-resolved visible (632.8 nm) and infrared (1152 nm) reflectivity measurements, together with structural and Z-contrast transmission electron microscope (TEM) imaging, have been used to study pulsed laser melting and subsequent solidification of thick (190–410 nm) amorphous (a) Si layers produced by ion implantation. Melting was initiated using a KrF (248 nm) excimer laser of relatively long [45 ns full width half maximum (FWHM)] pulse duration; the microstructural and time-resolved measurements cover the entire energy density (E1) range from the onset of melting (at ∼ 0.12J/cm2) up to the onset of epitaxial regrowth (at ∼ 1.1 J/cm2). At low E1 the infrared reflectivity measurements were used to determine the time of formation, the velocity, and the final depth of “explosively” propagating buried liquid layers in 410 nm thick a-Si specimens that had been uniformly implanted with Si, Ge, or Cu over their upper ∼ 300 nm. Measured velocities lie in the 8–14 m/s range, with generally higher velocities obtained for the Ge- and Cu-implanted “a-Si alloys.” The velocity measurements result in an upper limit of 17 (± 3) K on the undercooling versus velocity relationship for an undercooled solidfying liquid-crystalline Si interface. The Z-contrast scanning TEM measurements of the final buried layer depth were in excellent agreement with the optical measurements. The TEM study also shows that the “fine-grained polycrystalline Si” region produced by explosive crystallization of a-Si actually contains large numbers of disk-shaped Si flakes that can be seen only in plan view. These Si flakes have highly amorphous centers and laterally increasing crystallinity; they apparently grow primarily in the lateral direction. Flakes having this structure were found both at the surface, at low laser E1, and also deep beneath the surface, throughout the “fine-grained poly-Si” region formed by explosive crystallization, at higher E1. Our conclusion that this region is partially amorphous (the centers of flakes) differs from earlier results. The combined structural and optical measurements suggest that Si flakes nucleate at the undercooled liquid-amorphous interface and are the crystallization events that initiate explosive crystallization. Time-resolved reflectivity measurements reveal that the surface melt duration of the 410 nm thick a-Si specimens increases rapidly for 0.3E1 <0.6 J/cm2, but then remains nearly constant for E1 up to ∼ 1.0 J/cm2. For 0.3 < E1 < 0.6 J/cm2 the reflectivity exhibits a slowly decaying behavior as the near-surface pool of liquid Si fills up with growing large grains of Si. For higher E1, a flat-topped reflectivity signal is obtained and the microstructural and optical studies together show that the principal process occurring is increasingly deep melting followed by more uniform regrowth of large grains back to the surface. However, cross-section TEM shows that a thin layer of fine-grained poly-Si still is formed deep beneath the surface for E1<0.9 J/cm2, implying that explosive crystallization occurs (probably early in the laser pulse) even at these high E1 values. The onset of epitaxial regrowth at E1 = 1.1 J/cm2 is marked by a slight decrease in surface melt duration.


2010 ◽  
Vol 43 (9) ◽  
pp. 095402 ◽  
Author(s):  
Chengtao Wang ◽  
Hong Zhou ◽  
Pengyu lin ◽  
Na Sun ◽  
Qingchen Guo ◽  
...  

2001 ◽  
Vol 304-306 ◽  
pp. 604-607 ◽  
Author(s):  
C.M Allen ◽  
S Kumar ◽  
L Carroll ◽  
K.A.Q O’Reilly ◽  
H Cama

Author(s):  
B. E. Stapper ◽  
W. A. Sowa ◽  
G. S. Samuelsen

The breakup of a liquid sheet is of fundamental interest in the atomization of liquid fuels. The present study explores the breakup of a two-dimensional liquid sheet in the presence of co-flow air with emphasis on the extent to which liquid properties affect breakup. Three liquids, selected with varying values of viscosity and surface tension, are introduced through a twin-fluid, two-dimensional nozzle. A pulsed laser imaging system is used to determine the sheet structure at breakup, the distance and time to breakup, and the character of the ligaments and droplets formed. Experiments are conducted at two liquid flow rates with five flow rates of co-flowing air. Liquid properties affect the residence time required to initiate sheet breakup, and alter the time and length scales in the breakup mechanism.


1992 ◽  
Vol 114 (1) ◽  
pp. 39-45 ◽  
Author(s):  
B. E. Stapper ◽  
W. A. Sowa ◽  
G. S. Samuelsen

The breakup of a liquid sheet is of fundamental interest in the atomization of liquid fuels. The present study explores the breakup of a two-dimensional liquid sheet in the presence of co-flow air with emphasis on the extent to which liquid properties affect breakup. Three liquids, selected with varying values of viscosity and surface tension, are introduced through a twin-fluid, two-dimensional nozzle. A pulsed laser imaging system is used to determine the sheet structure at breakup, the distance and time to breakup, and the character of the ligaments and droplets formed. Experiments are conducted at two liquid flow rates with five flow rates of co-flowing air. Liquid properties affect the residence time required to initiate sheet breakup, and alter the time and length scales in the breakup mechanism.


2010 ◽  
Vol 1256 ◽  
Author(s):  
John E Mathis ◽  
Gyula Eres ◽  
Claudia Cantoni ◽  
Kyunghoon Kim ◽  
Hans Christen

AbstractNanorods composed of complex oxides have been synthesized using hydrothermal and sol-gel methods, but pulsed-laser deposition (PLD) provides precise, layer-by-layer control of growth, and is the method of choice for synthesizing complex structures. However, producing complex-oxide nanorods by PLD has proved elusive.Here we report on our efforts to produce nanorods composed of the best-understood complex oxide, strontium titanate (STO). The results suggest it is indeed possible to produce STO nanorods via PLD by using a template of MgO nanorods.


Sign in / Sign up

Export Citation Format

Share Document