TEM Study of the Growth Modes in ALMBE GaAs Layers on Si

1992 ◽  
Vol 281 ◽  
Author(s):  
A. Vilà ◽  
A. Comet ◽  
J. R. Morante ◽  
L. González ◽  
Y. González ◽  
...  

ABSTRACTIn this work, we have compared, by using Transmission Electron Microscopy (TEM) techniques, the initial stages of epitaxial growth of GaAs on Si (100) by conventional MBE and ALMBE, trying to find the conditions necessary to achieve 2D growth at the earliest stage of deposition. Our results show that flat layers with a good surface coverage can be obtained by reducing the GaAs ALMBE deposition temperature down to 200°C.


1992 ◽  
Vol 263 ◽  
Author(s):  
Ting-Yen Chiang ◽  
En-Huery Liu ◽  
Der-Hwa Yiin ◽  
Tri-Rung Yew

ABSTRACTThis paper presents results of the low—temperature epitaxial growth of GaAs on Si substrates with orientation 1°—4° off (100) by molecular beam epitaxy (MBE). The epitaxial growth ·is carried out on Si wafers subjected to HF solution treatment by “spin-etch” technique before the wafer is transferred to the entry chamber of MBE system. Methods used for reducing defect density in the epitaxial layers are proposed. The characterization techniques include cross-sectional transmission electron microscopy (XTEM), plan-view transmission electron microscopy, scanning electron microscopy (S EM), and double crystal X-ray diffraction (DCXRD). Epitaxial films with a full width at half—maximum (FWHM) of about 310 arcsec measured by DCXRD are obtained without annealing.-



2016 ◽  
Vol 858 ◽  
pp. 225-228 ◽  
Author(s):  
Ren Wei Zhou ◽  
Xue Chao Liu ◽  
Hui Jun Guo ◽  
H.K. Kong ◽  
Er Wei Shi

Triangle-shaped defects are one of the most common surface defects on epitaxial growth of 4H-SiC epilayer on nearly on-axis SiC substrate. In this paper, we investigate the feature and structure of such defects using Nomarski optical microscopy (NOM), micro-Raman spectroscopy and high resolution transmission electron microscopy (HR-TEM). It is found that triangle-shaped defects were composed of a thick 3C-SiC polytype, as well as 4H-SiC epilayer.



1998 ◽  
Vol 533 ◽  
Author(s):  
Glenn G. Jernigan ◽  
Conrad L. Silvestre ◽  
Mohammad Fatemi ◽  
Mark E. Twigg ◽  
Phillip E. Thompson

AbstractThe use of Sb as a surfactant in suppressing Ge segregation during SiGe alloy growth was investigated as a function of Sb surface coverage, Ge alloy concentration, and alloy thickness using xray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy. Unlike previous studies where Sb was found to completely quench Ge segregation into a Si capping layer, we find that Sb can not completely prevent Ge segregation while Si and Ge are being co-deposited. This results in the production of a non-square quantum well with missing Ge at the beginning and extra Ge at the end of the alloy. We also found that Sb does not relieve strain in thin films but does result in compositional or strain variations within thick alloy layers.



2006 ◽  
Vol 21 (7) ◽  
pp. 852-856 ◽  
Author(s):  
Wu-Yih Uen ◽  
Zhen-Yu Li ◽  
Shan-Ming Lan ◽  
Tsun-Neng Yang ◽  
Hwa-Yuh Shin


2000 ◽  
Vol 654 ◽  
Author(s):  
W. Tian ◽  
M. K. Lee ◽  
C. B. Eom ◽  
X. Q. Pan

AbstractBaRuO3 thin films were grown on (111) SrTiO3substrate by 90° off-axis rf-sputtering. Transmission electron microscopy studies revealed that the films consist of the metastable 4H hexagonal polymorph of BaRuO3 along with few defects. The films are c-axis oriented, single crystalline with the in-plane orientation relationship with respect to the SrTiO3substrate of [112 0] BaRuO3 // [110] SrTiO3. High-resolution transmission electron microscopy (HRTEM) studies of the film-substrate interface revealed the existence of a thin intermediate layer of the 9R hexagonal polymorph of BaRuO3 between the (111) SrTiO3 substrate and the 4H film. The formation mechanism for the intermediate layer is not fully understood though. Through the combination of HRTEM and quantitative image simulations, the atomic structure of the interface between the 9R intermediate layer and the underneath (111) SrTiO3 was constructed. Three initial growth modes were observed, each of them adopting the local continuity of the oxygen octahedral sublattice across the interface.





2000 ◽  
Vol 15 (4) ◽  
pp. 846-849 ◽  
Author(s):  
Koji Watari ◽  
Bhaskar Brahmaroutu ◽  
Gary L. Messing ◽  
Susan Trolier-McKinstry ◽  
Shang-Cong Cheng

A novel method for synthesizing anisotropically shaped particles of materials having cubic symmetry is reported. Anisotropically shaped single-crystal particles of cubic SrTiO3 were obtained by epitaxial growth on tabular tetragonal Sr3Ti2O7. Transmission electron microscopy revealed that both the shape and the size of the single-crystal particles was regulated by selecting a precursor material that can act as a reaction site in molten KCl and has an epitaxial relation with SrTiO3. The [001] and [110] directions of tabular SrTiO3 are parallel to the [001] and [110] directions of the Sr3Ti2O7 host particle, respectively. Tabular SrTiO3 particles with rectangular faces having an edge length of 10–20 μm and a thickness of ˜2 μm were obtained by reacting TiO2 and tabular Sr3Ti2O7 particles of the same edge length in molten KCl.



1996 ◽  
Vol 11 (11) ◽  
pp. 2777-2784 ◽  
Author(s):  
S. Takeno ◽  
S. Nakamura ◽  
K. Abe ◽  
S. Komatsu

A novel mosaic-like structure in SrTiO3 thin films was discovered and characterized by means of transmission electron microscopy (TEM). The films were deposited on a (001) oriented Pt surface. The orientation relationship between SrTiO3 film and Pt substrate was determined, and four types of growth modes were revealed. These four growth modes formed four types of domains, respectively, and these domains and Pt formed peculiarly ordered interfacial structures, i.e., near coincidence site lattices. Antiphase boundaries between two adjacent domains were also observed by high-resolution imaging.





Sign in / Sign up

Export Citation Format

Share Document