Competitive Pairing and the Chemistry of Coadsorbed Hydrogen and Halogens on Ge(100)

1992 ◽  
Vol 282 ◽  
Author(s):  
Yuemei L. Yang ◽  
Stephen M. Cohen ◽  
Mark P. D'Evelyn

ABSTRACTThe chemistry of coadsorbed H and X (X=C1, Br) on semiconductor surfaces is important in epitaxial growth of silicon from chlorosilanes and of SixGe1−x alloys, in hydrogenating/ halogenating cycles in atomic layer epitaxy, and also provides an interesting model system, yet has received little attention to date. We have investigated the interaction of HC1 and HBr with Ge(100) by temperature-programmed desorption, and find that H2, HCl and HBr each desorb with near-first-order kinetics near 570–590 K and that GeCl2 and GeBr2 desorb with near-second-order kinetics near 675 K and 710 K, respectively. Analysis of the desorption kinetics of H2 and HX provides evidence that adsorbed H and X atoms pair preferentially in a qualitatively similar way as H atoms adsorbed alone on Ge(100)2×1 or Si(100)2×1 and that pairing of H+X occurs in competition with pairing of H+H.

2020 ◽  
Author(s):  
Stefan R. Kachel ◽  
Pierre Martin Dombrowski ◽  
Tobias Breuer ◽  
Michael Gottfried ◽  
Gregor Witte

Here, we use temperature-programmed desorption (TPD) and Monte Carlo (MC) simulations<br>of TPD traces to characterize the desorption kinetics of pentacene (PEN) and perfluoropentacene (PFP) on MoS2 as a model system for OSCs on TMDCs. We show that the monolayers of PEN and PFP are thermally stabilized compared to their multilayers, which allows to prepare nominal monolayers by selective desorption of multilayers. This stabilization is, however, caused by entropy due to a high molecular mobility rather than an enhanced molecule-substrate bond. Consequently, the nominal monolayers are not densely packed films.


2020 ◽  
Author(s):  
Stefan R. Kachel ◽  
Pierre Martin Dombrowski ◽  
Tobias Breuer ◽  
Michael Gottfried ◽  
Gregor Witte

Here, we use temperature-programmed desorption (TPD) and Monte Carlo (MC) simulations<br>of TPD traces to characterize the desorption kinetics of pentacene (PEN) and perfluoropentacene (PFP) on MoS2 as a model system for OSCs on TMDCs. We show that the monolayers of PEN and PFP are thermally stabilized compared to their multilayers, which allows to prepare nominal monolayers by selective desorption of multilayers. This stabilization is, however, caused by entropy due to a high molecular mobility rather than an enhanced molecule-substrate bond. Consequently, the nominal monolayers are not densely packed films.


1990 ◽  
Vol 204 ◽  
Author(s):  
M. L. Wise ◽  
B. G. Koehler ◽  
P. Gupta ◽  
P. A. Coon ◽  
S. M. George

ABSTRACTThe desorption kinetics of hydrogen from the β1 H2 -TPD state on Si(111)7×7 and Si(100)2×l were studied using laser-induced thermal desorption (LITD) and temperature programmed desorption (TPD) techniques. Isothermal LITD studies of H2 desorption from Si(111)7×7 revealed second-order kinetics with a desorption activation energy of Ed = 62 ±4 kcal/mol and a preexponential factor of Vd = 92 ±10 cm2 /s. In contrast, H2 desorption from Si(100)2×l revealed first-order kinetics with an activation energy of Ed = 58 ±2 kcal/mol and a preexponential factor of Vd = 5.5 ±0.5 × 1015 s−1. The desorption kinetics yield similar upper limits for the Si-H bond energies but different desorption mechanisms on Si(lll)7×7 and Si(100)2×l.


1989 ◽  
Vol 145 ◽  
Author(s):  
T.H. Chiu

AbstractRecent efforts employing reflection high energy electron diffiaction measurements to study the chemical beam epitaxial growth of GaAs is reviewed. A reaction model which assumes the dominance of Ga alkyls and their derivatives adsorbed on the growing surface can explain most of the growth results in a consistent way. Dynamic evolution of the reconstruction pattern of the adsorbed triethylgallium or trimethylgallium overlayer illustrates how the alkyl-Ga bonds are cleaved sequentially. The growth rate dependence on temperature and incident flux can be fitted quite well in this reaction model. In the absence of As flux, the existence of a metastable Ga alkyl overlayer makes possible the atomic layer epitaxy of GaAs.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
M. Barberio ◽  
P. Barone ◽  
F. Stranges ◽  
R. A. Romano ◽  
F. Xu ◽  
...  

We present an experimental study adsorption of molecular gases (N2, H2, O2, CH4, C2H4, and C2H6) on multiwalled carbon nanotubes (MWCNTs) and MWCNT doped with Ag at low temperatures (35 K) and pressures (10−6 Torr) using the temperature programmed desorption technique. Our results show that the desorption kinetics is of the first order; furthermore comparative measurements indicate that Ag/MWCNTs have an adsorption capacity higher than that of a pure sample suggesting that these composites are good candidates as gas cryosorbers for applications in cryopumps or sensor of latest generation.


1990 ◽  
Vol 204 ◽  
Author(s):  
P.A. Coon ◽  
M.L. Wise ◽  
A.C. Dillon ◽  
M.B. Robinson ◽  
S.M. George

ABSTRACTDiethylsilane (DES), Si(C2H5)2H2, is a promising candidate for the atomic layer epitaxy of silicon. The adsorption and decomposition kinetics of DES on silicon surfaces were studied using laser-induced thermal desorption (LITD), temperature programmed desorption (TPD), and Fourier transform infrared (FTIR) spectroscopy. FTIR studies on porous silicon surfaces indicated that DES dissociatively adsorbs below 600 K and produces Si-H and Si-C2H5 surface species. The desorption products following DES adsorption on Si(111) 7×7 were C2H4 and H2 for all surface coverages using both LITD and TPD techniques. Ethylene and H2 desorption occurred at 700 and 810 K, respectively, during TPD experiments with a heating rate of β = 9 K/s. Ethylene desorption was consistent with a β-hydrogen elimination mechanism from the Si-C2H2 surface species. Isothermal LITD studies monitored the desorption kinetics of C2 H4 from Sl (111) 7×7 as a function of time following DES exposures. The first-order ethylene desorption kinetics were Ed = 36 kcal/mol and vd = 2.7 × 109 s−1. Additional LITD measurements determined that le initial reactive sticking coefficient of DES on Si(111) 7×7 decreased versus surface temperature. The temperature-dependent sticking coefficients suggested a precursormediated adsorption mechanism.


2019 ◽  
Author(s):  
Chem Int

The kinetics of oxidation of methyl orange by vanadium(V) {V(V)} has been investigated in the pH range 2.3-3.79. In this pH range V(V) exists both in the form of decavanadates and VO2+. The kinetic results are distinctly different from the results obtained for the same reaction in highly acidic solution (pH &lt; 1) where V(V) exists only in the form of VO2+. The reaction obeys first order kinetics with respect to methyl orange but the rate has very little dependence on total vanadium concentration. The reaction is accelerated by H+ ion but the dependence of rate on [H+] is less than that corresponding to first order dependence. The equilibrium between decavanadates and VO2+ explains the different kinetic pattern observed in this pH range. The reaction is markedly accelerated by Triton X-100 micelles. The rate-[surfactant] profile shows a limiting behavior indicative of a unimolecular pathway in the micellar pseudophase.


Sign in / Sign up

Export Citation Format

Share Document