Simple Flexible Boundary Conditions for the Atomistic Simulation of Dislocation Core Structure and Motion

1992 ◽  
Vol 291 ◽  
Author(s):  
Roberto Pasianot ◽  
Eduardo J. Savino ◽  
Zhao-Yang Xie ◽  
Diana Farkas

ABSTRACTFlexible boundary codes for the atomistic simulation of dislocations and other defects have been developed in the past mainly by Sinclair [1], Gehlen et al.[2], and Sinclair et al.[3]. These codes permitted the use of smaller atomic arrays than rigid boundary codes, gave descriptions of core non-linear effects and allowed fair assessments of the Peierls stress for dislocation motion. Green functions (continuum or discrete) or surface traction forces were used to relax the boundary atoms.A much simpler approach is followed here. Core and mobility effects at the boundary are accounted for by a dipole tensor centered at the dislocation line, whose components constitute six more parameters of the minimization process. Results are presented for [100] dislocations in NiAl. It is shown that, within the limitations of the technique, reliable values of the Peierls stress are obtained.

1998 ◽  
Vol 538 ◽  
Author(s):  
W. Cai ◽  
V.V. Bulatov ◽  
J.F. Justo ◽  
S. Yip ◽  
A.S. Argon

AbstractThe theory of dislocation motion in materials with high Peierls stress relates dislocation mobility to the underlying kink mechanisms. While one has been able to describe certain qualitative features of dislocation behavior, important details of the atomic core mechanisms are lacking. We present a hybrid micro-meso approach to modeling the mobility of a single dislocation in Si in which the energetics of defect cores and kink mechanisms are treated by atomistic simulation, while dislocation motion under applied stress and at finite temperature is described through kinetic Monte Carlo. Three important aspects pertaining to treating the details of local structure and dynamics of kinks are incorporated in our approach: (1) Realistic complexity of (multiple) kink mechanisms in the dislocation core. (2) Full Peach-Koehler formalism for treatment of curved dislocation. (3) Detailed investigation of interaction between partials. This simulation methodology is used to calculate micron-scale dislocation mobility, with no adjustable parameters; specifically we obtain temperature and stress dependent velocity results that can be compared with experimental measurements.


1994 ◽  
Vol 350 ◽  
Author(s):  
Kevin Ternes ◽  
Diana Farkas ◽  
Zhao-Yang Xie

AbstractTwo different interatomic potentials of the embedded atom type were used to study the relationships between dislocation core structure and mobility. Core structures were computed for a variety of dislocations in B2 NiAl. Several non-planar cores were studied as they reacted to applied stress and moved. The results show that in some cases, the dislocation core transforms to a planar structure before the dislocation glides, whereas in some other cases the core retains the non-planar structure at stresses sufficient to sustain glide. The effects of stoichiometry deviations on the core structure and motion were also studied.


1990 ◽  
Vol 213 ◽  
Author(s):  
D. Farkas ◽  
R. Pasianot ◽  
E. J. Savino ◽  
D.B. Miracle

ABSTRACTDislocation core structures have been calculated using atomistic computer simulations in NiAl and other B2 compounds. In the present work the calculated dislocation core structure are correlated with the known deforniatiorn behavior of B2 alloys. It is found that for the high ordering energy compounds <111> dislocations do not split in the simulations, in agreement with the experimental observations. It is also found that core structures for certain <111> and 1/2 <111> dislocations are spread in { 112} planes, which is consistent with the slip plane often reported for these dislocations. For the < 100> dislocations several orientations of the dislocation line produce sessile core configurations, whereas other orientations produce relatively more glissile cores. However, a structural transition of each of these dislocation cores may be required before < 100> dislocations become mobile, and this is consistent with the limited tensile ductility observed in NiAl “soft” single crystals below 200°C. Core structure simulations for < 110> dislocations are also reported and are discussed with respect to the importance of these dislocations in the deformation of NiAl.


2022 ◽  
Vol 203 ◽  
pp. 111081
Author(s):  
Tomohito Tsuru ◽  
Mitsuhiro Itakura ◽  
Masatake Yamaguchi ◽  
Chihiro Watanabe ◽  
Hiromi Miura

2003 ◽  
Vol 779 ◽  
Author(s):  
M.A. Soare ◽  
R.C. Picu

AbstractA dislocation core model is developed in terms of a singular decomposition of the elastic field surrounding the defect in a power series of 1/rn. The decomposition is a Laurent expansion beginning with the term corresponding to the Volterra dislocation and continuing with a series of dipoles and multipoles. The analysis is performed for an edge dislocation in an fcc lattice. The field surrounding the dislocation is derived by means of atomistic simulations. The coefficients of the series expansion are determined from the elastic field using path independent integrals. When loaded by a shear stress smaller than the Peierls stress, the core distorts. The distortion up to the instability (Peierls stress) is monitored based on the variation of these coefficients. The stacking fault separating the two partials is characterized, by using a similar procedure, as a source of elastic field.


2016 ◽  
Vol 45 (10) ◽  
pp. 5024-5032
Author(s):  
S. R. Li ◽  
X. Z. Wu ◽  
T. Zhang ◽  
Y. X. Tian ◽  
Z. X. Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document