Atomistic Simulation of Dislocation Motion as Determined by Core Structure

1994 ◽  
Vol 350 ◽  
Author(s):  
Kevin Ternes ◽  
Diana Farkas ◽  
Zhao-Yang Xie

AbstractTwo different interatomic potentials of the embedded atom type were used to study the relationships between dislocation core structure and mobility. Core structures were computed for a variety of dislocations in B2 NiAl. Several non-planar cores were studied as they reacted to applied stress and moved. The results show that in some cases, the dislocation core transforms to a planar structure before the dislocation glides, whereas in some other cases the core retains the non-planar structure at stresses sufficient to sustain glide. The effects of stoichiometry deviations on the core structure and motion were also studied.

1994 ◽  
Vol 364 ◽  
Author(s):  
Julia Panova ◽  
Diana Farkas

AbstractInteratomic potentials of the Embedded Atom and Embedded Defect types were used to study the effect of the angular dependent term in the Embedded Defect potential on the properties of defects in TiAl. The defect properties were computed with interatomic potentials developed with and without angular dependent terms. It was found that the inclusion of the angular dependent terms tends to increase the energies of the APB’s and lower the energies of stacking faults. The effects of the angular term on the relaxation around vacancies and antisites in TiAl was also studied, as well as the core structure of several dislocations in this compound.


1992 ◽  
Vol 291 ◽  
Author(s):  
Roberto Pasianot ◽  
Eduardo J. Savino ◽  
Zhao-Yang Xie ◽  
Diana Farkas

ABSTRACTFlexible boundary codes for the atomistic simulation of dislocations and other defects have been developed in the past mainly by Sinclair [1], Gehlen et al.[2], and Sinclair et al.[3]. These codes permitted the use of smaller atomic arrays than rigid boundary codes, gave descriptions of core non-linear effects and allowed fair assessments of the Peierls stress for dislocation motion. Green functions (continuum or discrete) or surface traction forces were used to relax the boundary atoms.A much simpler approach is followed here. Core and mobility effects at the boundary are accounted for by a dipole tensor centered at the dislocation line, whose components constitute six more parameters of the minimization process. Results are presented for [100] dislocations in NiAl. It is shown that, within the limitations of the technique, reliable values of the Peierls stress are obtained.


1996 ◽  
Vol 439 ◽  
Author(s):  
T. Harry ◽  
D. J. Bacon

AbstractThe small, coherent BCC precipitates of copper that form during fast neutron irradiation of ferritic steels are an important component of in-service irradiation hardening. Many-body interatomic potentials for the Fe-Cu alloy system have been developed and used to simulate the atomic structure of the ½<111> screw dislocation in both pure a-iron and the metastable BCC phase of copper. In iron, the core has the well-known 3-fold form of atomic disregistry. In BCC copper, however, the core structure depends on the lattice parameter. At the metastable equilibrium value, the core is similar to that in iron, but as the lattice parameter is reduced, as in a precipitate, the core becomes delocalised by transformation of the copper. Simulation of dislocated crystals containing precipitates shows that the extent of this effect depends on precipitate size. The energy changes indicate a significant dislocation pinning effect due to this dislocation-induced precipitate transformation process.


1994 ◽  
Vol 364 ◽  
Author(s):  
Chris C. Jones ◽  
J. K. Ternes ◽  
D. Farkas

AbstractInteratomic potentials of the Embedded Atom type were used to study defect structure in ternary intermetallics. Interatomic potentials with appropriate inner consistency were developed for the modeling of ternary systems. Alloys were considered in the Nb-Al-Ti and in the Ni-Al-Ti systems. The stability of ternary phases in these systems was studied, particularly the B2 phase in Nb rich alloys of the Nb-Al-Ti system. The effects of increasing Ti additions in these alloys were studied, as well as the APB energies in these ternary alloys.


2021 ◽  
Author(s):  
Zhaoxuan Wu ◽  
Rui Wang ◽  
Lingyu Zhu ◽  
Subrahmanyam Pattamatta ◽  
David Srolov

Abstract Body-centred-cubic (BCC) transition metals (TMs) tend to be brittle at low temperatures, posing significant challenges in their processing and major concerns for damage tolerance in critical load-carrying applications. The brittleness is largely dictated by the screw dislocation core structure; the nature and control of which has remained a puzzle for nearly a century. Here, we introduce a universal model and a physics-based material index χ that guides the manipulation of dislocation core structure in all pure BCC metals and alloys. We show that the core structure, commonly classified as degenerate (D) or non-degenerate (ND), is governed by the energy difference between BCC and face-centred cubic (FCC) structures and χ robustly captures this key quantity. For BCC TMs alloys, the core structure transition from ND to D occurs when χ drops below a threshold, as seen in atomistic simulations based on nearly all extant interatomic potentials and density functional theory (DFT) calculations of W-Re/Ta alloys. In binary W-TMs alloys, DFT calculations show that χ is related to the valence electron concentration at low to moderate solute concentrations, and can be controlled via alloying. χ can be quantitatively and efficiently predicted via rapid, low-cost DFT calculations for any BCC metal alloys, providing a robust, easily applied tool for the design of ductile and tough BCC alloys.


1990 ◽  
Vol 183 ◽  
Author(s):  
M. J. Mills ◽  
M. S. Daw

AbstractThe coupling of HRTEM with atomistic calculations is described for the study of grain boundaries and dislocations in aluminum. HRTEM images of the Σ9 (221) [110] grain boundary are compared with molecular statics calculations using both the Embedded Atom Method (EAM) and two pair potentials. Comparison between observed and simulated images are shown to serve as a stringent test of the theoretical methods. Atomistic calculations can in turn provide threedimensional information about the defect structure. Using the EAM, it is also possible to account for the effects of thin foil geometries on the minimim energy configuration of defects. While these effects are found to be minimal for grain boundary structures, the influence of the thin-foil geometries on the core structure of the 60° dislocation in aluminum is discussed. These comparisons indicate that the EAM function provides a good description of grain boundary structures, but fails to reproduce the observed dislocation core structure due to a low predicted value of the intrinsic stacking fault energy (SFE) on the (111). In contrast, the pair potentials used in this study provide reasonable SFE values, but appear to be less accurate for the prediction of the Σ9 (221) [110] grain boundary structures.


RSC Advances ◽  
2015 ◽  
Vol 5 (24) ◽  
pp. 18506-18510 ◽  
Author(s):  
Rong Sun ◽  
Zhongchang Wang ◽  
Naoya Shibata ◽  
Yuichi Ikuhara

We provide a direct atomic-resolution imaging of the core structure of a dislocation in technologically important TiO2 and predict that every individual impurity-free dislocation exhibits electric conductivity in an otherwise insulating TiO2.


1990 ◽  
Vol 213 ◽  
Author(s):  
Satish I. Rao ◽  
C. Woodward ◽  
T.A. Parthasarathy

ABSTRACTRecent studies have suggested a particular relationship between the degree of covalent bonding in TiAl and the mobility of dislocation[1,2]. Ultimately such electronic effects In ordered compounds must dictate the dislocation core structures and at the same time the dislocation mobility within a given compound. However, direct modelling of line defects Is beyond the capability of todays electronic structure techniques. Alternatively, significant steps toward extending our understanding of the flow behaviour of structural intermetallics may come through general application of empirical interatomic potential methods for calculating the structure and mobility of defects. Toward this end, we have constructed semi-empirical interatomic potentials within the embedded atom formalism for L1O and B2 type structures. These potentials have been determined by fitting to known bulk structural and elastic properties of TIAl and NiAl, using least squares procedures. Simple expressions that relate the parameters of the potentials to the bulk properties are used in the fitting procedure. Calculations of dislocation core structures and planar fault energies using these potentials are considered. The differences between the optimized bulk properties predicted from the potentials and the values for these properties are discussed in terms of non-spherical nature of the electron density distribution. Empirical methods which incorporate these effects into interatomic potentials are briefly discussed.


1985 ◽  
Vol 62 ◽  
Author(s):  
B. C. De Cooman ◽  
K.-H. Kuesters ◽  
C. B. Carter

ABSTRACTThe structural aspects of dislocations in GaAs which had been plastically deformed at high stress were studied by TEM. The glide of well-defined dislocations in their slip-plane was observed during the recombination-enchanced relaxation of the dislocations from their high-stress configuration. The strong asymmetry of dislocation velocity previously observed by other techniques is confirmed. High-resolution, electron micrographs of dissociated end-on screw dislocations were compared to computer simulated micrographs of model structures of the dislocation core. No definite conclusion regarding the exact core structure could be made due to the movement of the defects during the observation.


1997 ◽  
Vol 12 (10) ◽  
pp. 2559-2570 ◽  
Author(s):  
C. Vailhé ◽  
D. Farkas

Interatomic potentials of the embedded atom and embedded defect type were derived for the Co–Al system by empirical fitting to the properties of the B2 CoAl phase. The embedded atom potentials reproduced most of the properties needed, except that, in using this method, the elastic constants cannot be fitted exactly because CoAl has a negative Cauchy pressure. In order to overcome this limitation and fit the elastic constants correctly, angular forces were added using the embedded defect technique. The effects of angular forces to the embedded atom potentials were seen in the elastic constants, particularly C44. Planar fault energies changed up to 30% in the {110} and {112} γ surfaces and the vacancy formation energies were also very sensitive to the non-central forces. Dislocation core structures and Peierls stress values were computed for the 〈100〉 and 〈111〉 dislocations without angular forces. As a general result, the dislocations with a planar core moved for critical stress values below 250 MPa in contrast with the nonplanar cores for which the critical stress values were above 1500 MPa. The easiest dislocations to move were the 1/2〈111〉 edge superpartials, and the overall preferred slip plane was {110}. These results were compared with experimental observations in CoAl and previously simulated dislocations in NiAl.


Sign in / Sign up

Export Citation Format

Share Document