The Potential Role of Diffusion-Induced Grain-Boundary Migration in Extended Life Prediction

1992 ◽  
Vol 294 ◽  
Author(s):  
C.A. Handwerker ◽  
J.E. Blendell ◽  
C.G. Interrante ◽  
T.M. Ahn

ABSTRACTThe selection of materials that are suitable for various high-level waste-packaging designs must reflect the need to meet requirements for long-term performance in repository environments that change with time. With this in mind, we examine how grain boundaries in materials are induced to migrate as a result of solute diffusion even at low temperatures, how the composition of the matrix material is changed significantly by this diffusion-induced grain boundary migration (DIGM), and how the changing microstructures and compositions during DIGM lead to major changes in materials performance, such as corrosion or embrittlement. Methods are discussed for prediction of the long-term behavior of materials affected by DIGM.

1986 ◽  
Vol 84 ◽  
Author(s):  
A. Berusch ◽  
E. Gause

Summary:Each of the projects has made significant progress toward the eventual operation of a repository for the disposal of high-level radioactive wastes in the United States. Although much has been accomplished, much remains to be done. For example, the Site Characterization Plans for BWIP and NNWSI are nearing completion to be followed by initiation of site characterization activities. The Site Characterization Plan for the selected salt site is scheduled for completion later in 1987. Waste package advanced conceptual design studies are currently scheduled to begin at each project before the end of FY 1987. These efforts will lead to selections of concepts to be detailed in the license application design phase. Compliance with the NRC criteria that require long-term waste package performance will be demonstrated by DOE by performing all of the aforementioned activities. In doing so, the DOE will also be assured that its plan for the safe disposal of high-level waste will be satisfactorily implemented.


Author(s):  
D. B. Williams ◽  
A. D. Romig

The segregation of solute or imparity elements to grain boundaries can occur by three well-defined processes. The first is Gibbsian segregation in which an element of minimal matrix solubility confines itself to a monolayer at the grain boundary. Classical examples include Bi in Cu and S or P in Fe. The second process involves the depletion of excess matrix solute by volume diffusion to the boundary. In the boundary, the solute atoms diffuse rapidly to precipitates, causing them to grow by the ‘collector-plate mechanism.’ Such grain boundary diffusion is thought to initiate “Diffusion-Induced Grain Boundary Migration,” (DIGM). This process has been proposed as the origin of eutectoid transformations or discontinuous grain boundary reactions. The third segregation process is non-equilibrium segregation which result in a solute build-up around the boundary because of solute-vacancy interactions.All of these segregation phenomena usually occur on a sub-micron scale and are often affected by the nature of the grain boundary (misorientation, defect structure, boundary plane).


Author(s):  
K. Vasudevan ◽  
H. P. Kao ◽  
C. R. Brooks ◽  
E. E. Stansbury

The Ni4Mo alloy has a short-range ordered fee structure (α) above 868°C, but transforms below this temperature to an ordered bet structure (β) by rearrangement of atoms on the fee lattice. The disordered α, retained by rapid cooling, can be ordered by appropriate aging below 868°C. Initially, very fine β domains in six different but crystallographically related variants form and grow in size on further aging. However, in the temperature range 600-775°C, a coarsening reaction begins at the former α grain boundaries and the alloy also coarsens by this mechanism. The purpose of this paper is to report on TEM observations showing the characteristics of this grain boundary reaction.


Anales AFA ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 47-51
Author(s):  
P.I. Achával ◽  
C. L. Di Prinzio

In this paper the migration of a grain triple junction in apure ice sample with bubbles at -5°C was studied for almost 3hs. This allowed tracking the progress of the Grain Boundary (BG) and its interaction with the bubbles. The evolution of the grain triple junction was recorded from successive photographs obtained witha LEICA® optical microscope. Simultaneously, numerical simulations were carried out using Monte Carlo to obtain some physical parameters characteristic of the BG migration on ice.


2021 ◽  
pp. 1-9
Author(s):  
Suo Saruwatari ◽  
Takahiro Kamo ◽  
Yuki Nakata ◽  
Kota Kadoi ◽  
Hiroshige Inoue

2001 ◽  
Vol 670 ◽  
Author(s):  
Min-Joo Kim ◽  
Hyo-Jick Choi ◽  
Dae-Hong Ko ◽  
Ja-Hum Ku ◽  
Siyoung Choi ◽  
...  

ABSTRACTThe silicidation reactions and thermal stability of Co silicide formed from Co-Ta/Si systems have been investigated. In case of Co-Ta alloy process, the formation of low resistive CoSi2phase is delayed to about 660°C, as compared to conventional Co/Si system. Moreover, the presence of Ta in Co-Ta alloy films reduces the silicidation reaction rate, resulting in the strong preferential orientation in CoSi2 films. Upon high temperature post annealing in the furnace, the sheet resistance of Co-silicide formed from Co/Si systems increases significantly, while that of Co-Ta/Si systems maintains low. This is due to the formation of TaSi2 at the grain boundaries and surface of Co-silicide films, which prevents the grain boundary migration thereby slowing the agglomeration. Therefore, from our research, increased thermal stability of Co-silicide films was successfully obtained from Co-Ta alloy process.


Sign in / Sign up

Export Citation Format

Share Document