Structural Nature of Nanocrystalline Silicon

1993 ◽  
Vol 297 ◽  
Author(s):  
Weiqiang Han ◽  
Gaorong Han ◽  
Jianmin Qiao ◽  
Piyi Du ◽  
Zhishang Ding ◽  
...  

Nanocrystalline silicon (nc-Si:H) films with an average grain size ranging between 2 and 10 nm are prepared in a modified plasma chemical vapor deposition system. X-ray diffraction, transmission electron diffraction, and high resolution electron microscope are used to elucidate the structural nature in the deposited nc-Si:H films. The lattice network of the deposited silicon films changes from disordered structure to ordered structure with the increasing of plasma energy. The results also show that the crystal lattice of the nc-Si:H film is distorted from those of microcrystalline silicon and crystalline silicon. In the observed x-ray diffraction, there are two anomalous peaks at 2θ = 29.5° and 32.5° of Si besides the normal peaks at 2θ = 28.5° of Si(111) and 2θ = 47.3°of Si(220). By the high resolution electron microscopy study, a new crystallography structure with distorted Si(111) crystallites in nc- Si:H films is found. Based on our results, a structure model of nc-Si:H films is proposed.

1997 ◽  
Vol 3 (S2) ◽  
pp. 441-442
Author(s):  
P.A. Crozier ◽  
I.Y. Chan ◽  
C.Y. Chen ◽  
L.W. Finger ◽  
R.C. Medrud ◽  
...  

Low-dose high resolution electron microscopy (HREM) is a useful technique for elucidating the structure of zeolites. In recent years a number of zeolite structures have been solved using combinations of different characterization techniques including adsorption measurements, powder x-ray diffraction and low-dose high resolution electron microscopy (for example see ref. 2). We have used these techniques to study the structure of a novel zeolite material. However, great care must be exercised when interpreting data from these techniques in terms of crystal structural units. In this particular case, the structure was recently determined using single crystal x-ray diffraction and showed some surprises.Details of the synthesis of this zeolite are given elsewhere. The high adsorption capacity suggested that this zeolite possessed two interpenetrating channels (either a 10 and a 12 ring or two 12 ring channels). X-ray powder diffraction showed the material to be monoclinic with a= 18.5Å, b= 13.4 Å, c= 7.6 Å β = 101.5°).


1996 ◽  
Vol 452 ◽  
Author(s):  
G. Cicala ◽  
G. Bruno ◽  
P. Capezzuto ◽  
L. Schiavulli ◽  
V. Capozzi ◽  
...  

AbstractVisible photoluminescence at 1.62 eV has been observed at room temperature from fluorinated and hydrogenated nanocrystalline silicon (nc-Si:H,F) produced in a typical plasma enhanced chemical vapor deposition system. The use of SiF4-SiH4-H2 mixture, because of the H2 dilution and the presence of SiF4, favours the amorphous - crystalline transition through the etching process of the amorphous phase. The x - ray diffraction measurements give an average grain size of about 100 Å. The presence of these nanocrystals shifts the absorption edge of the films towards higher energy. An energy gap of 2.12 eV is estimated, although the hydrogen content in the material is only 4.5 at. %. The temperature dependence of the photoluminescence behaves similarly to that of porous silicon.


Author(s):  
Jillian F. Banfield ◽  
David R. Veblen ◽  
David J. Smith

A new, naturally occurring polymorph of TiO2 has been identified. This mineral forms lamellae generally only a few nanometers wide in anatase from two localities near Bintal Valais, Switzerland. The abundance of this mineral in anatase is too low to allow investigation by X-ray diffraction. The unit cell determined by electron diffraction is triclinic, with a = 0.754 nm, b = 0.448 nm, c = 0.616 nm, α = 78.90°, β = 124.55°, γ = 96.54°. The coherently intergrown lamellae are oriented with b parallel to a of anatase; the interface is parallel to (103) anatase.


Sign in / Sign up

Export Citation Format

Share Document