Reconstruction of the 3-D Atomic Structure of CoSi2 (111) by Photoelectron Holography

1993 ◽  
Vol 307 ◽  
Author(s):  
Y. Zhoul ◽  
X. Chen ◽  
J. C. Campuzano ◽  
G. Jennings ◽  
K. Gofron ◽  
...  

ABSTRACTWe report the use of photoelectron holography for the study of the atomic geometry of the (111) surface of single crystal CoSi2. We employ as a reference wave the Co 3p core electron emitted with a kinetic energy of 695 eV by absorption of synchrotron radiation. Remarkably sharp images of the nearest Si neighbors of the Co emitter were found using a computer reconstruction algorithm which compensates for the anisotropies of both reference and object waves. Comparison with other reconstruction schemes such as the Helmholtz-Kirchoff (HK) algorithm and the scattered-wave included Fourier transform (SWIFT), demonstrates the necessity of compensating for the reference-wave anisotropy.

1991 ◽  
Vol 59 (16) ◽  
pp. 1952-1953 ◽  
Author(s):  
Jiyong Zhao ◽  
Ping Yang ◽  
Shusheng Jiang ◽  
Xiaoming Jiang ◽  
Jianhua Jiang ◽  
...  

2017 ◽  
Vol 81 (4) ◽  
pp. 917-922
Author(s):  
Peter Elliott

AbstractThe crystal structure of the copper aluminium phosphate mineral sieleckiite, Cu3Al4(PO4)2 (OH)12·2H2O, from the Mt Oxide copper mine, Queensland, Australia was solved from single-crystal X-ray diffraction data utilizing synchrotron radiation. Sieleckiite has monoclinic rather than triclinic symmetry as previously reported and is space group C2/m with unit-cell parameters a = 11.711(2), b = 6.9233(14), c = 9.828(2) Å, β = 92.88(3)°, V = 795.8(3) Å3and Z = 2. The crystal structure, which has been refined to R1 = 0.0456 on the basis of 1186 unique reflections with Fo > 4σF, is a framework of corner-, edge- and face- sharing Cu and Al octahedra and PO4 tetrahedra.


1998 ◽  
Author(s):  
Andreas K. Freund ◽  
Jacques P. Sellschop ◽  
Konrad Lieb ◽  
Sylvain Rony ◽  
Clemens Schulze-Briese ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yan Cui ◽  
Yang Sun ◽  
Meng Xia ◽  
Dan Yao ◽  
Jun Lei

This research was aimed to study CT image features based on the backprojection filtering reconstruction algorithm and evaluate the effect of ropivacaine combined with dexamethasone and dexmedetomidine on assisted thoracoscopic lobectomy to provide reference for clinical diagnosis. A total of 110 patients undergoing laparoscopic resection were selected as the study subjects. Anesthesia induction and nerve block were performed with ropivacaine combined with dexamethasone and dexmedetomidine before surgery, and chest CT scan was performed. The backprojection image reconstruction algorithm was constructed and applied to patient CT images for reconstruction processing. The results showed that when the overlapping step size was 16 and the block size was 32 × 32, the running time of the algorithm was the shortest. The resolution and sharpness of reconstructed images were better than the Fourier transform analytical method and iterative reconstruction algorithm. The detection rates of lung nodules smaller than 6 mm and 6–30 mm (92.35% and 95.44%) were significantly higher than those of the Fourier transform analytical method and iterative reconstruction algorithm (90.98% and 87.53%; 88.32% and 90.87%) ( P < 0.05 ). After anesthesia induction and lobectomy with ropivacaine combined with dexamethasone and dexmedetomidine, the visual analogue scale (VAS) decreased with postoperative time. The VAS score decreased to a lower level (1.76 ± 0.54) after five days. In summary, ropivacaine combined with dexamethasone and dexmedetomidine had better sedation and analgesia effects in patients with thoracoscopic lobectomy. CT images based on backprojection reconstruction algorithm had a high recognition accuracy for lung lesions.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. G83-G92
Author(s):  
Ya Xu ◽  
Fangzhou Nan ◽  
Weiping Cao ◽  
Song Huang ◽  
Tianyao Hao

Irregular sampled gravity data are often interpolated into regular grid data for convenience of data processing and interpretation. The compressed sensing theory provides a signal reconstruction method that can recover a sparse signal from far fewer samples. We have introduced a gravity data reconstruction method based on the nonequispaced Fourier transform (NFT) in the framework of compressed sensing theory. We have developed a sparsity analysis and a reconstruction algorithm with an iterative cooling thresholding method and applied to the gravity data of the Bishop model. For 2D data reconstruction, we use two methods to build the weighting factors: the Gaussian function and the Voronoi method. Both have good reconstruction results from the 2D data tests. The 2D reconstruction tests from different sampling rates and comparison with the minimum curvature and the kriging methods indicate that the reconstruction method based on the NFT has a good reconstruction result even with few sampling data.


Sign in / Sign up

Export Citation Format

Share Document