scholarly journals Effect of Grain Boundary Structure on Grain Boundary Diffusivities in the Au/Ag System

1990 ◽  
Vol 209 ◽  
Author(s):  
Qing Ma ◽  
R. W. Balluffi

ABSTRACTGrain boundary chemical diffusivities for a series of symmetric [001] tilt boundaries in the Au/Ag system were measured by the surface accumulation method using newly developed thin-film multi-crystal specimens, in which the grain boundaries feeding the accumulation surface were all of the same type. Possible effects due to segregation at the grain boundaries and surfaces were avoided. CSL boundaries of low-Σ ( i.e., 5, 13, 17, 25) and also more general boundaries with tilt angles between the low-Σ orientations were selected. The diffusivities were found to vary monotonically with tilt angle ( i.e., no cusps at low-Σ's were found) in a manner consistent with the Structural Unit model.

1989 ◽  
Vol 4 (1) ◽  
pp. 62-77 ◽  
Author(s):  
S. P. Chen ◽  
D. J. Srolovitz ◽  
A. F. Voter

We have used “local volume” (embedded atom) type potentials to study the surfaces and grain boundaries of Ni, Al, and Ni3Al. The simulations show that with appropriately fit potentials, the surface and grain boundary structure can be realistically calculated. The surface rippling and relaxation show good agreement with experiments. The energies of most surfaces and grain boundaries also agree with existing data. The structural unit model for grain boundaries in Ni3Al shows the same generic units as in pure metals, but with large variations due to distortions and multiplicity. The utility of the structural unit model is thus more limited for alloys. The grain boundary energies were found to be the highest for Al-rich Ni3Al grain boundaries, and depend significantly on the local composition of the grain boundary. The cusps in the grain boundary energy as a function of misorientation angle are different for different grain boundary stoichiometries. The Ni3Al grain boundaries have approximately the same grain boundary energy and cohesive energy as that of Ni.


Author(s):  
Stuart McKernan ◽  
C. Barry Carter

The modeling of tilt grain boundaries in terms of repeating structural units of varying separation is now a well established concept. High-resolution electron microscope (HREM) images of different tilt grain boundaries in many materials display a qualitative similarity of atomic configurations of the grain boundary structure. These boundaries are frequently described in terms of characteristic structural units, which may be separated from each other by regions of ‘perfect’ crystal (as, for example, in low-angle grain boundaries), or may be contiguous, forming ordered arrays of the structural units along the boundary. In general there will be a different arrangement of the structural units or an arrangement of different structural units, according to the precise geometry of the particular grain boundary. The structure of some special grain boundaries has been examined and these are found to exist in several different configurations, depending on the orientation of the grain boundary plane among other parameters. Symmetry-related symmetric tilt grain boundaries and asymmetric tilt grain boundaries with one grain having a prominent, low-index facet, are commonly observed, low-energy configurations. Structural multiplicity of these configurations along the same grain boundary has been observed in some systems. Defects in the perfect ordering of the structural units may be caused by deviations of the grain boundary plane away from the perfect tilt orientation. Deviations of grain boundary structure away from the exact orientation will also produce defects in the repeating structural unit configuration. These deviations may have a regular and well-defined structure, producing a more complex structural unit.


2006 ◽  
Vol 503-504 ◽  
pp. 925-930 ◽  
Author(s):  
Kenichi Ikeda ◽  
Naoki Takata ◽  
Kousuke Yamada ◽  
Fuyuki Yoshida ◽  
Hideharu Nakashima ◽  
...  

Grain boundary structures in the Accumulative roll-bonding (ARB) processed copper (ARB-Cu) have been studied. The grain boundary structures were observed by high-resolution transmission electron microscopy (HRTEM). In order to clarify the difference between the grain boundaries in ARB-Cu and equilibrium boundaries, calculated atomic structure of symmetric tilt grain boundaries with <110> common axis (<110> symmetric tilt grain boundary; <110> STGB) in Cu were used. The near 14° boundary in the ARB-Cu could be described by the dislocation model, but the dense dislocation region existed near the grain boundary. The high angle boundaries in ARB-Cu could be described by the structural units which were obtained by molecular dynamics (MD) simulation. Furthermore, in the 2 cycles and 6 cycles ARB-Cu (2cARB-Cu and 6cARB-Cu), the deformation twin boundaries could be observed and described by the structural unit. Therefore, it was concluded that the grain boundary structure in the ARB-Cu was not much different from the normal equilibrium grain boundary and explained by conventional dislocation and structural unit models.


1997 ◽  
Vol 492 ◽  
Author(s):  
H. Van Swygenhoven ◽  
M. Spaczér ◽  
A. Caro

ABSTRACTMolecular dynamics computer simulations of high load plastic deformation at temperatures up to 500K of Ni nanophase samples with mean grain size of 5 nm are reported. Two types of samples are considered: a polycrystal nucleated from different seeds, each having random location and random orientation, representing a sample with mainly high angle grain boundaries, and polycrystals with seeds located at the same places as before, but with a limited missorientation representing samples with mainly low angle grain boundaries. The structure of the grain boundaries is studied by means of pair distribution functions, coordination number, atom energetics, and common neighbour analysis. Plastic behaviour is interpreted in terms of grain-boundary viscosity, controlled by a self diffusion mechanism at the disordered interface activated by thermal energy and stress.


2007 ◽  
Vol 558-559 ◽  
pp. 869-872
Author(s):  
S.Y. Choi ◽  
J.P. Buban ◽  
Naoya Shibata ◽  
Takahisa Yamamoto ◽  
Yuichi Ikuhara

Bicrystals of Nb-doped SrTiO3, having tilt angles of 4o~18 o with respect to [001], were prepared by joining two single crystals at 1873 K and then investigated to identify the effect of tilt angle on the grain boundary structure. The boundaries consisted of a regular array of dislocations but the positioning of cores along the boundary was found to be changed from a line to a zigzag as a tilt angle was increased up to 10o. The 14° - tilted boundary exhibited two kinds of boundary region exist at the same grain boundary; (1) the discrete cores region as observed in 4° ~ 10° - tilted boundaries and (2) the randomly oriented region as found in the 18° boundary. Thus it was observed that the structure of low-angle tilt boundary changed from the discrete dislocation structure to the randomly oriented structure as a tilt angle increases. These structural changes at the grain boundaries are considered to be related to a minimization of strain due to the high density of dislocations.


2004 ◽  
Vol 10 (S02) ◽  
pp. 304-305 ◽  
Author(s):  
James P Buban ◽  
Katsuyuki Matsunaga ◽  
Takahisa Yamamoto ◽  
Yuichi Ikuhara

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


1991 ◽  
Vol 05 (19) ◽  
pp. 2989-3028 ◽  
Author(s):  
E.I. RABKIN ◽  
L.S. SHVINDLERMAN ◽  
B.B. STRAUMAL

Recent theories of grain boundary structure have been reviewed briefly. The possibility of existence of the same variety of phase transitions on grain boundaries as that on the crystal external surface has been demonstrated. Recent experimental data and theoretical models concerning grain boundary phase transitions are critically analysed. Grain boundary phase transitions connected with the formation of thin disordered layers on the boundary (prewetting, premelting) are particularly distinguished. Results of recent indirect experiments, which may be treated in terms of prewetting and premelting, have been reviewed. Experimentally observed critical phenomena in the vicinity of the prewetting transition on the tin-germanium interphase boundary have been discussed in terms of the critical exponents theory. Some ideas regarding directions of further research are presented.


1990 ◽  
Vol 5 (5) ◽  
pp. 919-928 ◽  
Author(s):  
S. E. Babcock ◽  
D. C. Larbalestier

Regular networks of localized grain boundary dislocations (GBDs) have been imaged by means of transmission electron microscopy in three different types of high-angle grain boundaries in YBa2Cu3O7-δ, implying that these boundaries possess ordered structures upon which a significant periodic strain field is superimposed. The occurrence of these GBD networks is shown to be consistent with the GBD/Structural Unit and Coincidence Site Lattice (CSL)/Near CSL descriptions for grain boundary structure. Thus, these dislocations appear to be intrinsic features of the boundary structure. The spacing of the observed GBDs ranged from ∼10 nm to ∼100 nm. These GBDs make the grain boundaries heterogeneous on a scale that approaches the coherence length and may contribute to their weak-link character by producing the “superconducting micro-bridge” microstructure which has been suggested on the basis of detailed electromagnetic measurements on similar samples.


2007 ◽  
Vol 121-123 ◽  
pp. 1241-1244 ◽  
Author(s):  
Dong Seok Seo ◽  
Hwan Kim ◽  
Jong Kook Lee

In this study, it was demonstrated how second phases with small amount, which are hardly detected by XRD analysis, affect grain boundary dissolution and related mechanical properties of HA. All HA disks sintered at 1200 oC for 2 h in air with under moisture protection were phase pure and had Ca/P molar ratio of 1.67. Following certain period of exposure to the distilled water, the surface dissolution initiated at grain boundaries and particle loosening, subsequently resulting in decrease in mechanical properties of HA. In order to understand the dissolution mechanism, grain boundary structure of HA was identified by transmission electron microscopy (TEM) and high resolution TEM observation. From the analysis, it was found that the non-stoichiometric phase as α-tricalcium phosphate (TCP) transformed from β-TCP was existed at grain boundaries and caused surface dissolution of HA. From the XRD analysis, it was found that (211) and (112) planes of hydroxyapatite were susceptible to dissolution, whereas (300) plane was relatively stable.


Sign in / Sign up

Export Citation Format

Share Document