Er-Implanted Porous Silicon: a Novel Material for Si-Based Infrared LEDs

1994 ◽  
Vol 358 ◽  
Author(s):  
Fereydoon Namavar ◽  
F. Lu ◽  
C.H. Perry ◽  
A. Cremins ◽  
N.M. Kalkhoran ◽  
...  

ABSTRACTWe have demonstrated a strong, room-temperature, 1.54 μm emission from erbium-implanted at 190 keV into red-emitting porous silicon. Luminescence data showed that the intensity of infrared (IR) emission from Er implanted porous Si annealed at ≤ 650°C, was a few orders of magnitude stronger than Er implanted quartz produced under identical conditions, and was almost comparable to IR emission from In0.53Ga0.47As material which is used for commercial IR light-emitting diodes (LEDs).The strong IR emission (much higher than Er in quartz) and the weak temperature dependency of Er in porous Si, which is similar to Er3+ in wide-bandgap semiconductors, suggests that Er is not in SiO2 or Si with bulk properties but, may be confined in Si light-emitting nanostructures. Porous Si is a good substrate for rare earth elements because: 1) a high concentration of optically active Er3+ can be obtained by implanting at about 200 keV, 2) porous Si and bulk Si are transparent to 1.54 μm emission therefore, device fabrication is simplified, and 3) although the external quantum efficiency of visible light from porous Si is compromised because of self-absorption, it can be used to pump Er3+.

1992 ◽  
Vol 283 ◽  
Author(s):  
V. Petrova-Koch ◽  
T. Muschik ◽  
D. I. Kovalev ◽  
F. Koch ◽  
V. Lehmann

ABSTRACTTime-resolved studies of the visible photoluminescence in porous silicon with three different coverages of the internal surface are reported. We use aged, naturally oxidized porous Si (oxihydride), rapid thermal processed material (oxide) and samples stored in HF (pure hydride). A new, fast luminescence band in the blue-green spectral range and with response time less than 100 ns is observed at room temperature in each of the samples, although with different intensities. The observations prove that this is not an oxide-defect luminescence. We speculate on mechanisms for the origin of the fast luminescence in nanometer-size crystallites of Si.


2018 ◽  
Vol 924 ◽  
pp. 302-305
Author(s):  
Muhammad Haroon Rashid ◽  
Ants Koel ◽  
Toomas Rang

In the last decade, silicon carbide (SiC) has gained a remarkable position among wide bandgap semiconductors due to its high temperature, high frequency, and high power electronics applications. SiC heterostructures, based on the most prominent polytypes like 3C-SiC, 4H-SiC and 6H-SiC, exhibit distinctive electrical and physical properties that make them promising candidates for high performance optoelectronic applications. The results of simulations of nn-junction 3C-4H/SiC and 6H-4H/SiC heterostructures, at the nanoscale and microscale, are presented in this paper. Nanoscale devices are simulated with QuantumWise Atomistix Toolkit (ATK) software, and microscale devices are simulated with Silvaco TCAD software. Current-voltage (IV) characteristics of nanoscale and microscale simulated devices are compared and discussed. The effects of non-ideal bonding at the heterojunction interface due to lattice misplacements (axial displacement of bonded wafers) are studied using the ATK simulator. These simulations lay the groundwork for the experiments, which are targeted to produce either a photovoltaic device or a light-emitting diode (working in the ultraviolet or terahertz spectra), by direct bonding of SiC polytypes.


2018 ◽  
Vol 86 (5) ◽  
pp. 3-21
Author(s):  
Fengwen Mu ◽  
Yinghui Wang ◽  
Tadatomo Suga

1992 ◽  
Vol 283 ◽  
Author(s):  
A. G. Cullis ◽  
L. T. Canham ◽  
G. M. Williams ◽  
P. W. Smith ◽  
O. D. Dosser

ABSTRACTLuminescent oxidised porous Si is produced by rapid thermal annealing of the anodised material in a dry oxygen ambient. Its light-emitting properties are studied by both photoluminescence and cathodoluminescence methods. The structure of the oxidised material is examined by transmission electron microscopy, while its oxygen content is determined by X-ray microanalysis. These investigations show that crystalline Si nanostructures remain in the oxidised porous material and account for its luminescence properties. The work demonstrates that the speculated importance of either Si-based amorphous phases or the interesting material, siloxene, in this regard is unrealistic.


1992 ◽  
Vol 283 ◽  
Author(s):  
J. F. Harvey ◽  
R. A. Lux ◽  
D. C. Morton ◽  
G. F. McLane ◽  
R. Tsu

ABSTRACTTwo components of the electroluminescence (EL) from porous silicon light emitting diode (LED) devices have been observed. A slower component and a faster component have been identified. The slower component has a spectral peak shifted to the red from the corresponding photoluminescence (PL) spectrum. The faster component has a spectral peak well in the infrared (IR). Optical and electrical measurements of these two components are discussed. The temperature dependence of the two EL components are presented and contrasted. Our measurements demonstrate that the two EL components and the PL result from recombination in different parts of the porous silicon structure. As the temperature is reduced below room temperature the slower EL exhibits a decrease in intensity at relatively high temperatures, suggesting a freeze out of electrical carriers due to quantum confinement, resulting in a much reduced electrical excitation of the EL.


1992 ◽  
Vol 283 ◽  
Author(s):  
Nader M. Kalkhoran

ABSTRACTA patterning process compatible with conventional Si electronics technology, which has resolution better than 5 μm, has been developed in order to perform selected-area anodic etching for producing luminescent porous Si layers (PSL). Correlations between the anodic etching and photolithographic parameters have been identified, and their effects on the resolution and luminescence of porous Si layers have been studied. Finally, the first monolithic processing, i.e., true wafer-scale integration, of a Si-based visible light-emitting diode (LED) and a photodetector using conventional Si technology has been demonstrated.


2018 ◽  
Vol 3 (3) ◽  
pp. 655-662 ◽  
Author(s):  
Jun Hyuk Park ◽  
Dong Yeong Kim ◽  
E. Fred Schubert ◽  
Jaehee Cho ◽  
Jong Kyu Kim

1991 ◽  
Vol 256 ◽  
Author(s):  
Zhifeng Sui ◽  
Patrick P. Leong ◽  
Irving P. Herman ◽  
Gregg S. Higashi ◽  
Henryk Temkin

AbastracRaman spectra from a thick porous silicon film (∼100 μm) that strongly emits in the visible (∼ 6350 Å) at room temperature are obtained. An asymmetric peak with a Raman shift of ∼ 508 - 510 cm−1 and a width of ∼ 40 cm−1 is seen in every spectrum. This Raman feature resembles that of μc-Si, suggesting that the local structure of the porous silicon is a network of interconnected crystalline silicon islands with the island size in the nanometer range., and that the, shape of the islands is more sphere-like than rod-like. The characteristic dimension of the islands in these porous silicon films is estimated to be ∼ 2.5 - 3.0 nm on the basis of an empirical model calculation of phonon confinement.


Sign in / Sign up

Export Citation Format

Share Document