Growth of Ferroelectric PLT Thin Films on Various Single Crystal Substrates

1994 ◽  
Vol 361 ◽  
Author(s):  
Y.M. Kang ◽  
J.K. Ku ◽  
S. Baik

ABSTRACTFerroelectric Pb1−xLaxTi1−x/4(x = 0 ∼ 0.28) epitaxial thin films were prepared on MgO(001), SrTiO3(001), and LaAlO3(001) single crystalline substrates using pulsed laser deposition. The change in lattice constants of PLT films by La concentration, x, was investigated systematically for each substrate. RBS studies revealed that the composition of PLT films is consistent with that of the targets. Lattice constants, degree of c-axis orientation, crystal quality of the PLT films were characterized by symmetric and asymmetric X-ray scans. The strain which occurred during the cubic to tetragonal phase transition seemed to be the major factor determining the c-axis orientation configuration, i.e., 90° domain structure and the crystal quality of PLT films.

1996 ◽  
Vol 433 ◽  
Author(s):  
Y. M. Kang ◽  
J. K. Ku ◽  
S. Baik

AbstractFerroelectric Pb1−xLaxTiO3 (PLT, x = 0.00 ˜ 0.28) thin films have been prepared on MgO(001) substrates using pulsed laser deposition. The degree of c-axis orientation in PLT films increased as the La concentration (x) increased with systematic changes in lattice constants and transformation strains. For x ≥ 12, the PLT films showed full c-axis orientation.In order to understand why the domain evolution in PLT films changes with the La concentration, we have conducted high temperature X-ray diffraction to simulate the cooling process during which the domain structure is evolved. Lattice constants, degree of c-axis orientation, crystal quality of PLT films were characterized as a function of temperature. Lattice constants along substrate normal direction showed similar characteristics with those of powder. The degree of c-axis orientation just after the phase transformation at the Curie temperature also increased with La concentration. The crystal quality, which is quantified by the line width of diffraction peak, is insensitive to La concentration in paraelectric phase. However, it shows significant variation after the domain structure is evolved.


2016 ◽  
Vol vol1 (1) ◽  
Author(s):  
Billal Allouche ◽  
Yaovi Gagou ◽  
M. El Marssi

By pulsed laser deposition, lead potassium niobate Pb2KNb5O15 was grown on (001) oriented Gd3Ga5O12 substrate using a platinum buffer layer. The PKN thin films were characterized by X-Ray diffraction and Scanning Electron Microscopy (SEM). The dependence of their structural properties as a function of the deposition parameters was studied. It has been found that the out of plane orientation of PKN film depends on the oxygen pressure used during the growth. Indeed, PKN thin film is oriented [001] for low pressure and is oriented [530] for high pressure. For these two orientations, the crystalline quality of PKN film was determined using omega scans.


2010 ◽  
Vol 1267 ◽  
Author(s):  
Evan Lyle Thomas ◽  
Xueyan Song ◽  
Yonggao Yan ◽  
Joshua Martin ◽  
Winnie Wong-Ng ◽  
...  

AbstractThe influence of incorporating nanoparticulate additions into Ca3Co4O9 (CCO) thin films prepared by pulsed laser deposition using composite targets of CCO and CCO + 3wt% BaZrO3 (BZO) on Si and LaAlO3 substrates is investigated. X-ray data and high-resolution scanning electron microscopy reveal preferred c-axis orientation of the films deposited on Si substrates with the formation of nanoparticles between ∼ 10 – 50 nm. Preliminary thermoelectric behavior shows an enhancement of the power factor α2/ρ at room temperature. The microstructure and thermoelectric behavior of the CCO films are compared to the BZO-doped films.


1992 ◽  
Vol 275 ◽  
Author(s):  
Gun Yong Sung ◽  
Jeong Dae Suh ◽  
Kwang Yong Kang ◽  
Jeong Yong Lee

ABSTRACTWe have investigated the effect of substrate temperatures ranging from 680 °C to 800 °C on the orientation of pulsed laser deposited YBa2Cu3O7−x.(YBCO) thin films on (100) LaAlO3 substrates. X-ray diffraction studies indicate that there is a progressive change in the dominant orientation of the films from c-axis oriented (c-axis perpendicular to the substrate surface) to a-axis oriented (a-axis perpendicular to the substrate surface) grown as the substrate temperature is lowered. Two YBCO bilayers, which are the a-axis oriented YBCO film on the top of c-axis oriented YBCO film (a/c) bilayer and c-axis oriented YBCO film on the top of a-axis oriented YBCO film (c/a) bilayer, have been grown by in situ two step pulsed laser deposition and were characterized by scanning electron microscopy (SEM), Rutherford backscattering (RBS) spectrum, x-ray diffraction (XRD), and Tc measurements. Through SEM and XRD studies, double layer structures of the a/c and c/a bilayers were confirmed indirectly.


2000 ◽  
Vol 15 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Woong Choi ◽  
Timothy Sands ◽  
Kwang-Young Kim

Epitaxial thin films of LaVO3 were grown on (001) LaAlO3 substrates by pulsed laser deposition from a LaVO4 target in a vacuum ambient at substrate temperatures ≥500 °C. X-ray diffraction studies showed that epitaxial LaVO3 films consist of mixed domains of [110] and [001] orientations. Thermoprobe and four-probe conductivity measurements demonstrated the p-type semiconducting behavior of the epitaxial LaVO3 films. The temperature dependence of the conductivity is consistent with a thermally activated hopping mechanism with an activation barrier of 0.16 eV.


2005 ◽  
Vol 133 (10) ◽  
pp. 641-645 ◽  
Author(s):  
Yimin Cui ◽  
Chunchang Wang ◽  
Bisong Cao

2006 ◽  
Vol 306-308 ◽  
pp. 1313-1318
Author(s):  
J.S. Kim ◽  
B.H. Park ◽  
T.J. Choi ◽  
Se Hyun Shin ◽  
Jae Chul Lee ◽  
...  

Pb0.65Ba0.35ZrO3 (PBZ) thin films have been grown on MgO (001) substrates by pulsed-laser deposition (PLD). We have compared the structural and dielectric properties of PBZ films grown at various temperatures. A highly c-axis orientation has appeared at PBZ film grown at the deposition temperature of 550oC. The c-axis oriented PBZ film has also shown the largest tunability among all the PBZ films in capacitance-voltage measurements. The tunability and dielectric loss of the PBZ film was 20% and 0.00959, respectively. In addition, we have compared the temperature coefficient of capacitance (TCC) of a PBZ film with that of a Ba0.5Sr0.5TiO3 (BST) film which is a well-known material applicable to tunable microwave devices. We have confirmed that TCC value of a PBZ thin film was three-times smaller than that of a BST thin film.


2010 ◽  
Vol 123-125 ◽  
pp. 375-378 ◽  
Author(s):  
Ram Prakash ◽  
Shalendra Kumar ◽  
Chan Gyu Lee ◽  
S.K. Sharma ◽  
Marcelo Knobel ◽  
...  

Ce1-xFexO2 (x=0, 0.01, 0.03 and 0.0 5) thin films were grown by pulsed laser deposition technique on Si and LaAlO3 (LAO) substrates. These films were deposited in vacuum and 200 mTorr oxygen partial pressure for both the substrates. These films were characterized by x-ray diffraction XRD and Raman spectroscopy measurements. XRD results reveal that these films are single phase. Raman results show F2g mode at ~466 cm-1 and defect peak at 489 cm-1 for film that deposited on LAO substrates, full width at half maximum (FWHM) is increasing with Fe doping for films deposited on both the substrates.


2004 ◽  
Vol 201 (10) ◽  
pp. 2385-2389 ◽  
Author(s):  
Yanwei Ma ◽  
M. Guilloux-Viry ◽  
O. Pena ◽  
C. Moure

1992 ◽  
Vol 7 (10) ◽  
pp. 2639-2642 ◽  
Author(s):  
R.K. Singh ◽  
Deepika Bhattacharya ◽  
S. Sharan ◽  
P. Tiwari ◽  
J. Narayan

We have fabricated Ni3Al and NiAl thin films on different substrates by the pulsed laser deposition (PLD) technique. A high energy nanosecond laser beam was directed onto Ni–Al (NiAl, Ni3Al) targets, and the evaporated material was deposited onto substrates placed parallel to the target. The substrate temperature was varied between 300 and 400 °C, and the substrate-target distance was maintained at approximately 5 cm. The films were analyzed using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and Rutherford backscattering spectrometry. At energy densities slightly above the evaporation threshold, a slight enrichment of Al was observed, while at higher energy densities the film stoichiometry was close (<5%) to the target composition. Barring a few particles, the surface of the films exhibited a smooth morphology. X-ray and TEM results corroborated the formation of Ni3Al and NiAl films from similar target compositions. These films were characterized by small randomly oriented grains with grain size varying between 200 and 400 Å.


Sign in / Sign up

Export Citation Format

Share Document