c-Si (n +)/a-Si Alloy/Pd Schottky Barrier Device for the Effective Evaluation of Photovoltaic Performance of a-Si Alloy Materials

1995 ◽  
Vol 377 ◽  
Author(s):  
X. Deng ◽  
S. J. Jones ◽  
J. Evans ◽  
M. Izu

ABSTRACTThe Schottky barrier device with a metal/a-Si (n+) /a-Si alloy/metal structure has been widely used as an alternative evaluation tool for the photovoltaic performance of a-Si alloy material since it more reliably reflects the carrier transport in a solar cell than the conventional material characterization tool such as PDS, CPM, and SSPG, and is easier to be fabricated compared with a complete nip solar cell. However, a multiple chamber device making system is still needed to fabricate such a device since one does not want to deposit the a-Si intrinsic material to be studied together with an n+ layer in the same chamber. We have explored the use of a Schottky barrier device deposited on heavily doped n-type crystalline wafer substrate, c-Si (n+) /a-Si alloy/metal, as an evaluation tool for a-Si alloy materials. In this device, besides the evaporation of a thin semi-transparent metal layer, only the active a-Si alloy layer needs to be deposited using the plasma enhanced or other deposition techniques. We have compared the performance of such a device with that of reference n-i-p solar cells deposited at the same time and demonstrated that the FF measured under weak red light show a good correlation between these two types of devices. Therefore the c-Si (n+) /a-Si alloy/metal device can be used as a convenient technique to reliably evaluate the material performance in a solar cell device.

Author(s):  
Olusola Akinbami ◽  
Grace N Ngubeni ◽  
Francis Otieno ◽  
Rudo Kadzutu-Sithole ◽  
Cebisa Linganiso ◽  
...  

2D hybrid perovskites are promising materials for solar cell applications, in particular, cesium based perovskite nanocrystals as they offer the stability that is absent in organic-inorganic perovskite. However, the most...


2020 ◽  
Vol 92 (2) ◽  
pp. 20901
Author(s):  
Abdul Kuddus ◽  
Md. Ferdous Rahman ◽  
Jaker Hossain ◽  
Abu Bakar Md. Ismail

This article presents the role of Bi-layer anti-reflection coating (ARC) of TiO2/ZnO and back surface field (BSF) of V2O5 for improving the photovoltaic performance of Cadmium Sulfide (CdS) and Cadmium Telluride (CdTe) based heterojunction solar cells (HJSCs). The simulation was performed at different concentrations, thickness, defect densities of each active materials and working temperatures to optimize the most excellent structure and working conditions for achieving the highest cell performance using obtained optical and electrical parameters value from the experimental investigation on spin-coated CdS, CdTe, ZnO, TiO2 and V2O5 thin films deposited on the glass substrate. The simulation results reveal that the designed CdS/CdTe based heterojunction cell offers the highest efficiency, η of ∼25% with an enhanced open-circuit voltage, Voc of 0.811 V, short circuit current density, Jsc of 38.51 mA cm−2, fill factor, FF of 80% with bi-layer ARC and BSF. Moreover, it appears that the TiO2/ZnO bi-layer ARC, as well as ETL and V2O5 as BSF, could be highly promising materials of choice for CdS/CdTe based heterojunction solar cell.


2013 ◽  
Vol 134 ◽  
pp. 59-62 ◽  
Author(s):  
Qingbei Li ◽  
Jianming Lin ◽  
Jihuai Wu ◽  
Zhang Lan ◽  
Yue Wang ◽  
...  

Optik ◽  
2021 ◽  
pp. 167492
Author(s):  
Sagar Bhattarai ◽  
Arvind Sharma ◽  
Deboraj Muchahary ◽  
Monika Gogoi ◽  
T.D. Das

2021 ◽  
Author(s):  
Giuk Jeong ◽  
Seunghwan Ji ◽  
Ji Woon Choi ◽  
Gihun Jung ◽  
Byungha Shin

Sb2Se3, a quasi-1D structured binary chalcogenide, has great potential as a solar cell light absorber owing to its anisotropic carrier transport and benign grain boundaries when the absorber layer is...


2016 ◽  
Vol 98 ◽  
pp. 26-31 ◽  
Author(s):  
Keisuke Sato ◽  
Yuuki Sugano ◽  
Kenji Hirakuri ◽  
Naoki Fukata

We report on the structural characterization and the photovoltaic performances of novel photoelectric conversion materials fabricated by simplified and cheap procedures based on a chemical approach. Our prepared composite microparticles were composed of fluorosilicate/phosphorus oxide holding together by ammonium. When such composite microparticles were used in the active layer of the hybrid solar cells, the relatively high Jsc was obtained by causing the adequate carrier transport from the active layer to each electrode, attaining the best photovoltaic performance with a PCE of 4.45 %. These findings indicate that the fluorosilicate/phosphorus oxide composite microparticles have sufficient ability as the photoelectric conversion materials.


2016 ◽  
Vol 59 (9) ◽  
pp. 710-718 ◽  
Author(s):  
Lixue Guo ◽  
Chengbin Fei ◽  
Rong Zhang ◽  
Bo Li ◽  
Ting Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document