Two-layer Model for Electroabsorption and Built-in Potential Measurements on a-Si:H pin Solar Cells

1996 ◽  
Vol 420 ◽  
Author(s):  
Lin Jiang ◽  
E. A. Schiff

AbstractModulated Electroabsorption (EA) measurements have been widely used to estimate built-in potentials (Vbi) in semiconductor devices. The method is particularly simple in devices for which the built-in potential is dropped in a single layer of the device. However, experimental results in amorphous silicon and organic devices can involve at least 2 layers. In the present paper we consider the information which can be obtained about 2-layer semiconductor devices from electroabsorption measurements. In particular we describe a 2-layer EA model appropriate to a-Si:H based pin solar cells, for which both the p+ and i layers contribute to the EA signal. We present an analysis of capacitance and second harmonic measurements which yields the EA coefficient for the p+ layer of the device, and we present measurements on a-Si:H pin devices which appear consistent with this analysis. Wavelength dependent EA then yields the built-in potential across the 2-layer device.

1995 ◽  
Vol 377 ◽  
Author(s):  
K. Vasanth ◽  
A. Payne ◽  
B. Crone ◽  
S. Sherman ◽  
M. Jakubowski ◽  
...  

ABSTRACTThe i-layers of the middle and bottom cells in stable triple-junction amorphous silicon solar cells are composed of a-SiGe:H alloys which are graded in composition to enhance performance. We compare modeling and experimental results for three i-layer band gap grading schemes to determine the optimal profile. We find a good correlation between model trends and measured device parameters for all grading schemes. This is encouraging for the use of the model in predictive device design. We find that the highest white and red light performance do not necessarily have the same cell parameter set. Modeling and experiment indicate that thin cells without band gap profile and with suitably designed p/i and n/i buffer layers, have the best red light performance.


2015 ◽  
Vol 787 ◽  
pp. 1-15 ◽  
Author(s):  
Peter G. Baines

This paper describes a new model of internal hydraulic jumps in two-layer systems that places no restrictions (such as the Boussinesq approximation) on the densities of the two fluids. The model is based on that of Borden and Meiburg (J. Fluid Mech., vol. 276, 2013, R1) for Boussinesq jumps, and has the appropriate behaviour in various limits (single-layer, small amplitude, Boussinesq, infinite depth). The energy flux loss in each layer across the jump is positive for all realistic jumps, reaching a maximum for the jump with maximum speed. Larger-amplitude jumps are possible, with decreasing energy loss, down to the ‘conjugate state’ of zero energy loss. However, it is argued that such states may be difficult to realise in practice, and if formed, will tend to the jump with maximum speed. The energy loss is mostly in the contracting layer unless the density there is small. The two-layer model is extended to incorporate mixing between the layers within the jump, with mixing based on the Richardson number.


1996 ◽  
Vol 452 ◽  
Author(s):  
M. Goetz ◽  
P. Torres ◽  
P. Pernet ◽  
J. Meier ◽  
D. Fischer ◽  
...  

AbstractThe first successful deposition of ‘micromorph’ silicon tandem solar cells of the n-i-p-n-i-p configuration is reported. In order to implement the ‘micromorph’ solar cell concept, four key elements had to be prepared: First, the deposition of mid-gap, intrinsic microcrystalline silicon (μc-Si:H) by the 'gas purifier method', second, the amorphous silicon (a-Si:H) n-i-p single junction solar cell, third, the microcrystalline silicon n-i-p single junction solar cell and fourth, the ability of depositing on aluminium sheet substrates.All the solar cells presented have been deposited on flat aluminium sheets, using a single layer antireflection coating to couple the light into the cell. It is shown, that this antireflection concept- together with a flat substrate- holds for amorphous single junction solar cells, but it reaches its limit with the extended range of spectral response of the ‘micromorph’ cell.The best initial efficiencies for each category of n-i-p cells on flat substrates were: 8.7% for the amorphous silicon single junction cell, 4.9% for the microcrystalline silicon single junction cell and 9.25% for the ‘micromorph’ tandem cell.


2012 ◽  
Vol 703 ◽  
pp. 279-314 ◽  
Author(s):  
Zachary Borden ◽  
Eckart Meiburg ◽  
George Constantinescu

AbstractInternal bores, or internal hydraulic jumps, arise in many atmospheric and oceanographic phenomena. The classic single-layer hydraulic jump model accurately predicts the bore height and propagation velocity when the difference between the densities of the expanding and contracting layers is large (i.e. water and air), but fails in the Boussinesq limit. A two-layer model, which conserves mass separately in each layer and momentum globally is more accurate in the Boussinesq limit, but it requires for closure an assumption about the loss of energy across a bore. It is widely believed that bounds on the bore speed can be found by restricting the energy loss entirely to one of the two layers, but under some circumstances, both bounds overpredict the propagation speed. A front velocity slower than both bounds implies that, somehow, the expanding layer is gaining energy. We directly examine the flux of energy within internal bores using two- and three-dimensional direct numerical simulations and find that although there is a global loss of energy across a bore, a transfer of energy from the contracting to the expanding layer causes a net energy gain in the expanding layer. The energy transfer is largely the result of turbulent mixing at the interface. Within the parameter regime investigated, the effect of mixing is much larger than non-hydrostatic and viscous effects, both of which are neglected in the two-layer analytical models. Based on our results, we propose an improved two-layer model that provides an accurate propagation velocity as a function of the geometrical parameters, the Reynolds number, and the Schmidt number.


Author(s):  
Emma E. Doyle ◽  
Andrew J. Hogg ◽  
Heidy M. Mader

Most models of volcanic ash flows assume that the flow is either dilute or dense, with dynamics dominated by fluid turbulence or particle collisions, respectively. However, most naturally occurring flows feature both of these end members. To this end, a two-layer model for the formation of dense pyroclastic basal flows from dilute, collapsing volcanic eruption columns is presented. Depth-averaged, constant temperature, continuum conservation equations to describe the collapsing dilute current are derived. A dense basal flow is then considered to form at the base of this current owing to sedimentation of particles and is modelled as a granular avalanche of constant density. We present results which show that the two-layer model can predict much larger maximum runouts than would be expected from single-layer models, based on either dilute or dense conditions, as the dilute surge can outrun the dense granular flow, or vice versa, depending on conditions.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


Sign in / Sign up

Export Citation Format

Share Document