Investigation of the off-current in amorphous silicon thin film transistors for SiO2 and SiNx. gate insulators

1996 ◽  
Vol 424 ◽  
Author(s):  
Jeong Hyun Kim ◽  
Woong Sik Choi ◽  
Chan Hee Hong ◽  
Hoe Sup Soh

AbstractThe off current behavior of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) with an atmospheric pressure chemical vapor deposition (APCVD) silicon dioxide (SiO2) gate insulator were investigated at negative gate voltages. The a-Si:H TFT with SiO2 gate insulator has small off currents and large activation energy (Ea) of the off current compared to the a-Si:H TFT with SiNx gate insulator. The holes induced in the channel by negative gate voltage seem to be trapped in the defect states near the a-Si:H/SiO2 interface. The interface state density in the lower half of the band gap of a-Si:H/SiO2 appears to be much higher than that for a-Si:H/SiNx.

1996 ◽  
Vol 424 ◽  
Author(s):  
N. Bhat ◽  
A. Wang ◽  
K. C. Saraswat

AbstractThe performance and reliability of low pressure chemical vapor deposited (LPCVD) oxides subjected to oxidizing, inert and nitriding annealing ambients is characterized both at low temperature (600°C) and high temperature (950°C). The oxidizing ambient results in worse initial interface state density and charge to break down. We attribute this to the interfacial stress developed during the oxidation, due to the volume mismatch between Si and SiO2. The C-V measurements on poly-Si substrate capacitors and the charge pumping measurements on poly-Si thin film transistors (TFTs) indicate lower trap density for inert and nitriding ambients. The TFTs with inert anneal exhibit lower bias temperature instability compared to oxidizing ambient.


1998 ◽  
Vol 508 ◽  
Author(s):  
A. Izumi ◽  
T. Ichise ◽  
H. Matsumura

AbstractSilicon nitride films prepared by low temperatures are widely applicable as gate insulator films of thin film transistors of liquid crystal displays. In this work, silicon nitride films are formed around 300 °C by deposition and direct nitridation methods in a catalytic chemical vapor deposition system. The properties of the silicon nitride films are investigated. It is found that, 1) the breakdown electric field is over 9MV/cm, 2) the surface state density is about 1011cm−2eV−1 are observed in the deposition films. These result shows the usefulness of the catalytic chemical vapor deposition silicon nitride films as gate insulator material for thin film transistors.


1997 ◽  
Vol 36 (Part 1, No. 10) ◽  
pp. 6226-6229 ◽  
Author(s):  
Huang-Chung Cheng ◽  
Jun-Wei Tsai ◽  
Chun-Yao Huang ◽  
Fang-Chen Luo ◽  
Hsing-Chien Tuan

1996 ◽  
Vol 424 ◽  
Author(s):  
R. E. I. Schropp ◽  
K. F. Feenstra ◽  
C. H. M. Van Der Werf ◽  
J. Holleman ◽  
H. Meiling

AbstractWe present the first thin film transistors (TFTs) incorporating a low hydrogen content (5 - 9 at.-%) amorphous silicon (a-Si:H) layer deposited by the Hot-Wire Chemical Vapor Deposition (HWCVD) technique. This demonstrates the possibility of utilizing this material in devices. The deposition rate by Hot-Wire CVD is an order of magnitude higher than by Plasma Enhanced CVD. The switching ratio for TFTs based on HWCVD a-Si:H is better than 5 orders of magnitude. The field-effect mobility as determined from the saturation regime of the transfer characteristics is still quite poor. The interface with the gate dielectric needs further optimization. Current crowding effects, however, could be completely eliminated by a H2 plasma treatment of the HW-deposited intrinsic layer. In contrast to the PECVD reference device, the HWCVD device appears to be almost unsensitive to bias voltage stressing. This shows that HW-deposited material might be an approach to much more stable devices.


1996 ◽  
Vol 420 ◽  
Author(s):  
R. E. I. Schropp ◽  
K. F. Feenstra ◽  
C. H. M. Van Der Werf ◽  
J. Holleman ◽  
H. Meiling

AbstractWe present the first thin film transistors (TFTs) incorporating a low hydrogen content (5 - 9 at.-%) amorphous silicon (a-Si:H) layer deposited by the Hot-Wire Chemical Vapor Deposition (HWCVD) technique. This demonstrates the possibility of utilizing this material in devices. The deposition rate by Hot-Wire CVD is an order of magnitude higher than by Plasma Enhanced CVD. The switching ratio for TFTs based on HWCVD a-Si:H is better than 5 orders of magnitude. The field-effect mobility as determined from the saturation regime of the transfer characteristics is still quite poor. The interface with the gate dielectric needs further optimization. Current crowding effects, however, could be completely eliminated by a H2 plasma treatment of the HW-deposited intrinsic layer. In contrast to the PECVD reference device, the HWCVD device appears to be almost unsensitive to bias voltage stressing. This shows that HW-deposited material might be an approach to much more stable devices.


1994 ◽  
Vol 358 ◽  
Author(s):  
T. Sameshima ◽  
M. Sekiya ◽  
M. Hara ◽  
N. Sano ◽  
A. Kohno

ABSTRACTThe technologies of laser crystallization and methods of SiO2 formation in remote plasma chemical vapor deposition or SiO evaporation with an oxygen ambient realize the fabrication of n-channel polycrystalline and amorphous silicon thin film transistors (poly-Si and a-Si TFTs) at a temperature lower than 300 °C. The defect density was achieved to be 2∼3×1011 cm−2eV−1 and threshold voltage was about IV for both TFTs. The maximum field effect mobility was 600 cm2/Vs for poly-Si TFTs and 2.6 cm2/Vs for a-Si TFTs. The mobility of poly-Si TFT decreased as the gate voltage increases. This is interpreted as that the electrons are confined in the narrow inversion layer and electron scattering with phonon is enhanced for higher normal electric field.


Sign in / Sign up

Export Citation Format

Share Document