Pulsed Laser Etching of GaN and AIN Films

1997 ◽  
Vol 482 ◽  
Author(s):  
H. Chen ◽  
R. D. Vispute ◽  
V. Talyansky ◽  
R. Enck ◽  
S. B. Ogale ◽  
...  

AbstractDue to limited success in wet etching of GaN and AIN, dry etching techniques have become more relevant for the processing of the GaN films. Here we demonstrate the results of an alternative dry etching process, namely, pulsed laser etching, for GaN and AIN. In this method, a KrF pulsed excimer laser (λ=248 nm, τ=30 ns) was used to etch epitaxial GaN and AIN films. The dependence of the etching characteristics on the laser energy density and the number of pulses has been studied. The etch depth showed a linear dependence on the number of pulses over a wide range of laser energy densities. The threshold intensity for GaN etching was determined to be 0.33 J/cm2. The etching rate was found to be a strong function of laser energy density. Above the threshold, the etch rate was found to be 300–1400 Å per pulse leading to etching rates of 0.1–1μm/sec depending upon the laser energy density and the pulse repetition rate. It is shown that the etching mechanism is based on laser induced absorption, decomposition and layer by layer removal of the GaN.

2003 ◽  
Vol 780 ◽  
Author(s):  
A. Suárez-García ◽  
J-P. Barnes ◽  
R. Serna ◽  
A. K. Petford-Long ◽  
C. N. Afonso ◽  
...  

AbstractThe effect of the laser energy density used to deposit Bi onto amorphous aluminum oxide (a-Al2O3) on the growth of Bi nanocrystals has been investigated using transmission electron microscopy of cross section samples. The laser energy density on the Bi target was varied by one order of magnitude (0.4 to 5 J cm-2). Across the range of energy densities, in addition to the Bi nanocrystals nucleated on the a-Al2O3 surface, a dark and apparently continuous layer appears below the nanocrystals. Energy dispersive X-ray analysis on the layer have shown it is Bi rich. The separation from the Bi layer to the bottom of the nanocrystals on top is consistent with the implantation range of Bi species in a-Al2O3. As the laser energy density increases, the implantation range has been measured to increase. The early stages of the Bi growth have been analyzed in order to determine how the Bi implanted layer develops.


Carbon ◽  
2020 ◽  
Vol 167 ◽  
pp. 504-511 ◽  
Author(s):  
Hiroki Yoshinaka ◽  
Seiko Inubushi ◽  
Takanori Wakita ◽  
Takayoshi Yokoya ◽  
Yuji Muraoka

1993 ◽  
Vol 301 ◽  
Author(s):  
Kenshiro Nakashima

ABSTRACTErbium ions were successfully doped in silicon by pulsed laser irradiation above the threshold laser energy density. Photoluminescence peaks at 1.54, 1.59 and 1.64 µm from Er-optical centers were observed after annealing of Er-doped samples. The intensity of the 1.54 µm Er-emission band increased upon increase in the laser energy density, and then gradually decreased after reaching the maximum, due to the laser sputtering of the silicon substrate. Oxygen atoms, which were unintentionally codoped with Er-ions, were found to be distributed in the same region as in Er-ions, and were suggested to play roles to activate Er-optical centers. The maximum concentration of Er-ions doped in the solid state regime were estimated to be the order of 1018 cm−3 by the Rutherford backscattering measurements.


2009 ◽  
Vol 66 ◽  
pp. 183-186
Author(s):  
L. Li ◽  
Chuan Bin Wang ◽  
Qiang Shen ◽  
Lian Meng Zhang

Barium dititanate (BaTi2O5) films were prepared on MgO (100) substrate by pulsed laser deposition under various laser energy densities. The effect of laser energy on crystallinity, orientation and surface morphology was investigated. The preferred orientation of the as-deposited films changes from (710) to (020) with decreasing laser energy, and the surface morphology is different depending on laser energy too. The b-axis oriented BaTi2O5 film could be obtained at the laser energy density of 2J/cm2, where the film shows a dense surface with an elongated granular texture.


1997 ◽  
Vol 36 (Part 1, No. 9B) ◽  
pp. 5925-5929 ◽  
Author(s):  
Shizutoshi Ando ◽  
Kaoru Konakahara ◽  
Soichiro Okamura ◽  
Takeyo Tsukamoto

Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 53
Author(s):  
Jian Yu ◽  
Tingting Xiao ◽  
Xuemin Wang ◽  
Xiuwen Zhou ◽  
Xinming Wang ◽  
...  

An appropriate writing field is very important for magnetic storage application of L10 FePt nanocomposite thin films. However, the applications of pure L10 FePt are limited due to its large coercivity. In this paper, the ratios of L10 and non-L10 phase FePt alloy nanoparticles in FePt/MgO (100) nanocomposite thin films were successfully tuned by pulsed laser deposition method. By adjusting the pulsed laser energy density from 3 to 7 J/cm2, the ordering parameter initially increased, and then decreased. The highest ordering parameter of 0.9 was obtained at the pulsed laser energy density of 5 J/cm2. At this maximum value, the sample had the least amount of the soft magnetic phase of almost 0%, as analyzed by a magnetic susceptibility study. The saturation magnetization decreased with the increase in the content of soft magnetic phase. Therefore, the magnetic properties of FePt nanocomposite thin films can be controlled, which would be beneficial for the magnetic applications of these thin films.


Sign in / Sign up

Export Citation Format

Share Document