The Shallow Implantation of Bismuth During the Growth of Bismuth Nanocrystals in Al2O3 by Pulsed Laser Deposition

2003 ◽  
Vol 780 ◽  
Author(s):  
A. Suárez-García ◽  
J-P. Barnes ◽  
R. Serna ◽  
A. K. Petford-Long ◽  
C. N. Afonso ◽  
...  

AbstractThe effect of the laser energy density used to deposit Bi onto amorphous aluminum oxide (a-Al2O3) on the growth of Bi nanocrystals has been investigated using transmission electron microscopy of cross section samples. The laser energy density on the Bi target was varied by one order of magnitude (0.4 to 5 J cm-2). Across the range of energy densities, in addition to the Bi nanocrystals nucleated on the a-Al2O3 surface, a dark and apparently continuous layer appears below the nanocrystals. Energy dispersive X-ray analysis on the layer have shown it is Bi rich. The separation from the Bi layer to the bottom of the nanocrystals on top is consistent with the implantation range of Bi species in a-Al2O3. As the laser energy density increases, the implantation range has been measured to increase. The early stages of the Bi growth have been analyzed in order to determine how the Bi implanted layer develops.

2009 ◽  
Vol 66 ◽  
pp. 183-186
Author(s):  
L. Li ◽  
Chuan Bin Wang ◽  
Qiang Shen ◽  
Lian Meng Zhang

Barium dititanate (BaTi2O5) films were prepared on MgO (100) substrate by pulsed laser deposition under various laser energy densities. The effect of laser energy on crystallinity, orientation and surface morphology was investigated. The preferred orientation of the as-deposited films changes from (710) to (020) with decreasing laser energy, and the surface morphology is different depending on laser energy too. The b-axis oriented BaTi2O5 film could be obtained at the laser energy density of 2J/cm2, where the film shows a dense surface with an elongated granular texture.


2007 ◽  
Vol 3 (4) ◽  
pp. 286-288
Author(s):  
Lei Lü ◽  
Qing-shan Li ◽  
Li Li ◽  
Li-chun Zhang ◽  
Cai-feng Wang ◽  
...  

1995 ◽  
Vol 395 ◽  
Author(s):  
R.D. Vispute ◽  
H. Wu ◽  
K. Jagannadham ◽  
J. Narayan

ABSTRACTAIN thin films have been grown epitaxially on Si(111) and Al2O3(0001) substrates by pulsed laser deposition. These films were characterized by FTIR and UV-Visible, x-ray diffraction, high resolution transmission electron and scanning electron microscopy, and electrical resistivity. The films deposited on silicon and sapphire at 750-800°C and laser energy density of ∼ 2 to 3J/cm2 are epitaxial with an orientational relationship of AIN[0001]║ Si[111], AIN[2 110]║Si[011] and AlN[0001]║Al2O3[0001], AIN[1 2 1 0]║ Al2O3[0110] and AIN[1010] ║ Al2O3[2110]. The both AIN/Si and AIN/Al2O3 interfaces were found to be quite sharp without any indication of interfacial reactions. The absorption edge measured by UV-Visible spectroscopy for the epitaxial AIN film grown on sapphire was sharp and the band gap was found to be 6.1eV. The electrical resistivity of the films was about 5-6×l013Ω-cm with a breakdown field of 5×106V/cm. We also found that the films deposited at higher laser energy densities ≥10J/cm2 and lower temperatures ≤650°C were nitrogen deficient and containing free metallic aluminum which degrade the microstructural, electrical and optical properties of the AIN films


2000 ◽  
Vol 623 ◽  
Author(s):  
N.D. Zakharov ◽  
A.R. James ◽  
A. Pignolet ◽  
S. Senz ◽  
D. Hesse

AbstractEpitaxial, ferroelectric Ba2Bi4Ti5O18 films grown on LaNiO3/CeO2/ZrO2:Y2O3 epitaxial layers on Si(100) are investigated by cross-section high-resolution transmission electron microscopy (HRTEM). The films are perfectly oriented and consist of well-developed grains of rectangular shape. The grain boundaries are strained and contain many defects, especially a new type of defect, which can be described as a staircase formed by repeated lattice shifts of Δ ∼ c/12 ∼ 4.2 Å in the [001] direction. This repeated shift results in seemingly bent ribbons of stacked Bi2O2 planes, involving, however, individual Bi2O2 planes which remain strongly parallel to the (001) plane. These defects contain an excess of bismuth. Other defects found in the grain interior include mistakes in the stacking sequence originating from the presence of single, well-oriented, non-stoichionietric layers intergrown with the stoichiometric Ba2Bi4Ti5O18 film matrix.


Carbon ◽  
2020 ◽  
Vol 167 ◽  
pp. 504-511 ◽  
Author(s):  
Hiroki Yoshinaka ◽  
Seiko Inubushi ◽  
Takanori Wakita ◽  
Takayoshi Yokoya ◽  
Yuji Muraoka

2014 ◽  
Vol 936 ◽  
pp. 282-286
Author(s):  
Ying Wen Duan

Single-crystalline, epitaxial LaFeO3 films with 5 at. % substitution of Pd on the Fe site are grown on (100) SrTiO3 substrate by pulsed-laser deposition technique. The epitaxial orientation relationships are (110)[001]LFPO||(100)[001]STO. X-ray diffraction and transmission electron microscopy reveal that the LFPO films have high structural quality and an atomically sharp LFPO/STO interface. After reduction treatments of as-grown LFPO films, very little Pd escaped the LFPO lattice onto the film surface, the formed Pd (100) particles are oriented epitaxially, and parallel to the LFPO films surface.


2007 ◽  
Vol 997 ◽  
Author(s):  
Byoung Youl Park ◽  
Sol Lee ◽  
Chang Hyun Bae ◽  
Seung Min Park ◽  
Kyoungwan Park

AbstractSiOx (x<2) films were deposited in an O2 atmosphere using Si target in a pulsed laser deposition system. Post-annealing process was employed in an O2 atmosphere to form the nanometer-sized Si crystallites embedded in the SiO2 films. The transmission electron microscope analysis shows the existence of crystalline silicon nano-dots with diameters ranging from 2 to 4 nm. Also, the clear separation of Si and SiO2 phases can be seen in the X-ray photoemission spectra. Photoluminescence peak from the annealed films was obtained, which is attributed to the quantum confinement effect of the Si nano-dots. C-V measurements of the metal-oxide-silicon (MOS) structure containing the silicon nano-dots in the oxide layer were performed to investigate the charging/discharging behavior of the silicon nano-dots. The maximum program window of the MOS was measured to be4.1V under ±5V sweep.


1995 ◽  
Vol 397 ◽  
Author(s):  
A. J. Pedraza ◽  
S. Cao ◽  
D. H. Lowndes ◽  
L. F. Allard

ABSTRACTThin films of gold, copper and iron deposited on silica were driven into the substrate by a laser pulse. This transport takes place only when the irradiation is performed at a laser energy density of 0.7 J/cm2 or lower. Cross sectional transmission electron microscopy (TEM) of the irradiated specimens reveals two distinctive stages in the encapsulation process. In the first, the film melts and clusters into small particles and in the second one the particles are driven into the substrate by the laser pulse. The particle size of encapsulated metal varies from 5 to 50 nm. Selected area diffraction of the large particles and lattice fringe images of the smaller particles reveal pure metals, e.g., gold, copper or iron. Titanium films laser irradiated are not encapsulated in silica; instead, these films react with silica forming an amorphous compound. Apparently, one of the conditions required for encapsulation is that the metal should not react with the substrate material. On subsequent irradiation at a laser energy density of 1.5 J/cm2, ablation of silica partially exposes the metallic particles. Strong bonding between a new film deposited after irradiation and the substrate is obtained because these particles anchor the freshly deposited film. Anchoring is clearly revealed by cross sectional TEM. The mechanisms of encapsulation are discussed using results from TEM and adhesion testing.


1993 ◽  
Vol 301 ◽  
Author(s):  
Kenshiro Nakashima

ABSTRACTErbium ions were successfully doped in silicon by pulsed laser irradiation above the threshold laser energy density. Photoluminescence peaks at 1.54, 1.59 and 1.64 µm from Er-optical centers were observed after annealing of Er-doped samples. The intensity of the 1.54 µm Er-emission band increased upon increase in the laser energy density, and then gradually decreased after reaching the maximum, due to the laser sputtering of the silicon substrate. Oxygen atoms, which were unintentionally codoped with Er-ions, were found to be distributed in the same region as in Er-ions, and were suggested to play roles to activate Er-optical centers. The maximum concentration of Er-ions doped in the solid state regime were estimated to be the order of 1018 cm−3 by the Rutherford backscattering measurements.


Sign in / Sign up

Export Citation Format

Share Document