scholarly journals Structure-Property Relationships of BaCeO Perovskites for the Oxidative Dehydrogenation of Alkanes

1997 ◽  
Vol 497 ◽  
Author(s):  
T. M. Nenoff ◽  
N. B. Jackson ◽  
J. E. Miller ◽  
A. G. Sault ◽  
D. Trudeil

ABSTRACTThe oxidative dehydrogenation (ODH) reactions for the formation of two important organic feedstocks ethylene and propylene are of great interest because of the potential in capital and energy savings associated with these reactions. Theoretically, ODH can achieve high conversions of the starting materials (ethane and propane) at lower temperatures than conventional dehydrogenation reactions. The important focus in our study of ODH catalysts is the development of a structure-property relationship for catalyst with respect to selectivity, so as to avoid the more thermodynamically favorable combustion reaction. Catalysts for the ODH reaction generally consist of mixed metal oxides. Since for the most selective catalyst lattice oxygen is known to participate in the reaction, catalysts are sought with surface oxygen atoms that are labile enough to perform dehydrogenation, but not so plentiful or weakly bound as to promote complete combustion. Also, catalysts must be able to replenish surface oxygen by transport from the bulk.Perovskite materials are candidates to fulfill these requirements. We are studying BaCeO3 perovskites doped with elements such as Ca, Mg, and Sr. During the ODH of the alkanes at high temperatures, the perovskite structure is not retained and a mixture of carbonates and oxides is formed, as revealed by XRD. While the Ca doped materials showed enhanced total combustion activity below 600°C, they only showed enhanced alkene production at 700°C. Bulk structural and surface changes, as monitored by powder X-ray diffraction, and X-ray photoelectron spectroscopy are being correlated with activity in order to understand the factors affecting catalyst performance, and to modify catalyst formulations to improve conversion and selectivity.

Author(s):  
Xiangke Kong ◽  
Chunhui Li ◽  
Ping Wang ◽  
Guoxin Huang ◽  
Zhitao Li ◽  
...  

An investigation was made into the effects of tannery sludge on soil chemical properties and microbial communities in a typical soil profile with long-term tannery sludge contamination, North China. The results showed that trivalent chromium (Cr(III)), ammonium, organic nitrogen, salinity and sulfide were the predominant contaminants in tannery sludge. Although the tannery sludge contained high chromium (Cr, 3,0970 mg/kg), the proportion of mobile Cr forms (exchangeable plus carbonate-bound fraction) only accounted for 1.32%. The X-ray diffraction and X-ray photoelectron spectroscopy results further demonstrated that the Cr existed in a stable state of oxides and iron oxides. The alkaline loam soil had a significant retardation effect on the migration of salinity, ammonium, Cr(III) and sulfide, and the accumulation of these contaminants occurred in soils (0–40 cm). A good correlation (R2 = 0.959) was observed between total organic carbon (TOC) and Cr(III) in the soil profile, indicating that the dissolved organic matter from sludge leachate promoted the vertical mobility of Cr(III) via forming Cr(III)-organic complexes. The halotolerant bacteria (Halomonas and Tepidimicrobium) and organic degrading bacteria (Flavobacteriaceae, Tepidimicrobium and Balneola) became the dominant microflora in the soil profile. High contents of salinity, Cr and nitrogen were the main environmental factors affecting the abundance of indigenous microorganisms in soils.


Holzforschung ◽  
2006 ◽  
Vol 60 (4) ◽  
pp. 423-428 ◽  
Author(s):  
Petri Widsten ◽  
Voytek S. Gutowski ◽  
Sheng Li ◽  
Tony Cerra ◽  
Sharon Molenaar ◽  
...  

Abstract The bulk and surface properties of blocks of nine Australian wood species of commercial importance were investigated to elucidate the factors affecting timber gluability with structural one-component polyurethane adhesives. Cross-lap joints were prepared from freshly sanded blocks and the joints were subjected to creep loading in a condensing humidity environment. The median tensile strength (MTS) of the joints was found to improve with decreasing phenolic extractives content, lower timber density and decreasing lipophilic surface extractives content. The latter was assessed from O/C atomic ratios of the timber surfaces determined by X-ray photoelectron spectroscopy (XPS). The content of bulk lipophilic extractives and lignins and wettability of the surface as determined by the sessile drop method did not reveal significant correlations with the adhesion properties. The adhesion tests indicated significant gluability differences between the species investigated.


1993 ◽  
Vol 47 (10) ◽  
pp. 1609-1611 ◽  
Author(s):  
M. Bryhan ◽  
E. C. Onyiriuka ◽  
L. S. Hersh ◽  
W. Hertl

Polystyrene surfaces are often corona-discharge or plasma treated to oxidize the surface, which enhances the wettability. X-ray photoelectron spectroscopy (XPS), which requires time and an ultra-high vacuum, is generally used to measure this surface oxidation. A rapid, simple method for measuring polystyrene surface oxidation is described. The surface is soaked in a solution of Azure A dye, which adsorbs only to oxidized sites on the polystyrene. The excess dye is flushed away and the bound dye is desorbed with a detergent; an absorbance measurement at 635 nm is used to determine the quantity of desorbed dye. This value correlates with the polystyrene surface oxygen concentration and gives r2 = 0.93.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 741
Author(s):  
Quan Wang ◽  
Fangyuan Jiang ◽  
Xiao-Kun Ouyang ◽  
Li-Ye Yang ◽  
Yangguang Wang

As a natural biological adsorbent, shell powder is inexpensive, highly efficient, and does not leave any chemical residue; thus, it can be used to remove contaminants from water. In this study, we used mussel shells as a raw material to prepare an adsorbent. Scanning electron microscopy was used to observe the surface morphology of the mussel shell powder before and after calcination, and X-ray diffraction measurements, Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller measurements were performed to analyze the structure and composition of calcined mussel shell powder. Characterization of the shell powder before and after calcination revealed a change from calcium carbonate to calcium oxide, as well as the formation of a surface porous structure. Using Pb(II) as a representative contaminant, various factors affecting the adsorption were explored, and the adsorption mechanism was analyzed. It was found that the adsorption is consistent with the Freundlich adsorption isotherm and the pseudo second-order model. The calcined mussel shell powder exhibits excellent adsorption for Pb(II), with an adsorption capacity reaching 102.04 mg/g.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3469
Author(s):  
Chi Uyen Phan ◽  
Jie Shen ◽  
Kaxi Yu ◽  
Jianming Mao ◽  
Guping Tang

The dissolution rate is the rate-limiting step for Biopharmaceutics Classification System (BCS) class II drugs to enhance their in vivo pharmacokinetic behaviors. There are some factors affecting the dissolution rate, such as polymorphism, particle size, and crystal habit. In this study, to improve the dissolution rate and enhance the in vivo pharmacokinetics of sorafenib tosylate (Sor-Tos), a BCS class II drug, two crystal habits of Sor-Tos were prepared. A plate-shaped crystal habit (ST-A) and a needle-shaped crystal habit (ST-B) were harvested by recrystallization from acetone (ACN) and n-butanol (BuOH), respectively. The surface chemistry of the two crystal habits was determined by powder X-ray diffraction (PXRD) data, molecular modeling, and face indexation analysis, and confirmed by X-ray photoelectron spectroscopy (XPS) data. The results showed that ST-B had a larger hydrophilic surface than ST-A, and subsequently a higher dissolution rate and a substantial enhancement of the in vivo pharmacokinetic performance of ST-B.


Holzforschung ◽  
2018 ◽  
Vol 72 (11) ◽  
pp. 993-1000 ◽  
Author(s):  
Agnieszka Laskowska ◽  
Janusz W. Sobczak

AbstractEuropean oak wood (W) was thermo-mechanically modified (TM) via densifying at 100 and 150°C and the surface properties of the TMW were investigated. The contact angle (CA) of the wood with the reference liquids water and diiodomethane was determined using the sessile drop method. The surface free energy of the TMW on tangential sections within the first 60 s after applying a drop was analyzed. The roughness parameters Ra and Rz parallel (‖) and perpendicular (⊥) to the grain were investigated. The wettability analysis showed that densified wood had a higher CA and lower work of adhesion and surface free energy than non-densified wood. An X-ray photoelectron spectroscopy [XPS or electron spectroscopy for chemical analysis (ESCA)] analysis showed that the oxygen to carbon atoms ratio (O/C ratio) of densified wood surface was lower than that of non-densified wood. The carbon C1-C2 atoms ratio (C1/C2 ratio) increased with increasing TM temperature. The results were interpreted as being that extractives migrate to the surface and amorphous and glassy polymers, i.e. lignin and hemicelluloses, in wood are rearranged. Increasing densification temperature makes TMW surfaces more hydrophobic.


1995 ◽  
Vol 385 ◽  
Author(s):  
K. Konstadinidis ◽  
F. Papadimitrakopoulos ◽  
M. Galvin ◽  
R. Opila

ABSTRACTThe chemical and electronic properties of aluminum/poly(p-phenylenevinylene) (PPV) interfaces were studied in situ using x-ray photoelectron spectroscopy (XPS). It was observed that the aluminum atoms react with the oxygen-containing groups present as impurities on the surface of PPV to form Al-O-C linkages. The Al atoms also interact with the wrsystem of the polymer as indicated by changes in the valence band. Contrary to to recent suggestions (Ettedgui et al.) the relation between surface oxygen content and band bending is not straightforward, as shown by deposition on PPV surfaces prepared by two different synthetic routes.


Sign in / Sign up

Export Citation Format

Share Document