Study of Glass-Ceramic Waste Forms

1997 ◽  
Vol 506 ◽  
Author(s):  
S.V. Stefanovsky ◽  
S.V. Ioudintsev ◽  
B.S. Nikonov ◽  
B.I. Omelianenko ◽  
T.N. Lashtchenova

ABSTRACTSince the early of the 1990s the method of inductive melting in a cold crucible (IMCC) has been applied at SIA “Radon” for production of various wasteforms, including glasses and Synroc-type ceramics. Sphene-based glass-ceramics composed of glass and crystalline phases were considered as appropriate wasteform for High Level Waste immobilisation. Investigation of two glass-ceramic specimens prepared with the IMCC has been performed using optical microscopy, XRD, SEM/EDS, and TEM methods. The samples produced consist of vitreous and crystalline phases. The vitreous phase consists of two varieties of glass formed by the immiscibility of the initial melt onto two separate liquids. One of the glasses is observed as spherical microinclusions in the matrix glass. The glass of the microspheres are differed from the matrix glass composition by higher contents of Ca, Ti, Ce, Sr, Zr (or Cr), while the matrix glass contains higher amounts of Si, Al, and alkalies. The crystalline phases with sphene- and perrierite-like structures have been also occurred. Their total quantity reaches up to 50 vol.%. The synthetic perrierite has similar unit-cell parameters with its natural mineral analogs with the only exception in two-fold value of c dimension. Zr, Ce, and Sr are incorporated into synthetic sphene and perrierite, while Cs is hosted by the glass phases.

1987 ◽  
Vol 112 ◽  
Author(s):  
Roseanne S. Baker ◽  
Bruce A. Staples ◽  
Dieter A. Knecht ◽  
Julius R. Berreth

AbstractCandidate products are being evaluated to immobilize the routinely calcined waste at the Idaho Chemical Processing Plant (ICPP). A potential product with minimal volume for immobilizing ICPP high-level waste (HLW) for final disposal is a high-waste-loading and high-density glass-ceramic. Glass-ceramics are formed by Hot Isostatic Pressing (HIPing) the HLW with selected additives, such as SiO2, B2O3, Li2O, Na2O, and Y2O3. Glass-ceramic products have been formed with calcine loa ings up to 80 wt% and densities up to 3.4 g/cm3. Crystalline phases observed in the glass-ceramic products include calcium fluoride, monoclinic and cubic zirconia, calcium- and yttrium-stabilized zirconia, and zircon. An interstitial amorphous phase also exists consisting of the oxides of silicon, aluminum, boron, and alkalis. The glass-ceramic waste forms give leach rates comparable to simulated HLW glass products.


2021 ◽  
Author(s):  
Rafika SOUAG ◽  
Nour elhayet KAMEL ◽  
Dalila Moudir ◽  
Yasmina MOUHEB ◽  
Fayrouz Aouchiche

Abstract This study focused on the effect of TiO 2 addition on the crystallines phases’ formation, structure and chemical durability of a nuclear glass ceramic constituted by an aluminosilicate glass in the system: SiO2-Al2O3-CaO-MgO-ZrO2-TiO2 . The materials with four contents of TiO2 , ranging from 4.11 to 7.11 wt.%, are synthesized by a discontinuous method,. For the whole of materials, X-ray diffraction analysis allow identifying an aluminosilicate belonging to pyroxenes silicates family as a main phase, powelite and calzirtite. Both SEM and DTAanalyses confirmed these results. The materials FTIR analysis reveals the glass ceramics complex chemical composition. MCC1 and MCC2 tests, performed on selected glass ceramic materials, indicate that the materials with 4.11 and 5.11 wt.% TiO2 are the most durable against Si, Al, Mg and Ce elements release, in MCC2 test; The results make conclusions valuable on the selection of such glass ceramics as candidate for the disposal of high-level waste.


1996 ◽  
Vol 465 ◽  
Author(s):  
M. Mika ◽  
M. J. Schweiger ◽  
J. D. Vienna ◽  
P. Hrma

ABSTRACTThe liquidus temperature (TL) often limits the loading of high-level waste in glass through the constraint that TL must be at least 100°C below the temperature at which the glass viscosity is 5 Pa-s. In this study, values of TL for spinel primary crystalline phase were measured as a function of glass composition. The test glasses were based on high-iron Hanford Site tank wastes. All studied glasses precipitated spinel (Ni,Fe,Mn)(Cr,Fe)2O4 as the primary crystalline phase. TL was increased by additions of Cr2O3, NiO, Al2O3, Fe2O3, MgO, and MnO; while Li2O, Na2O, B2O3, and SiO2 had a negative effect. Empirical mixture models were fitted to data.


2012 ◽  
Vol 6 (4) ◽  
pp. 183-192 ◽  
Author(s):  
Fatma Margha ◽  
Amr Abdelghany

Ternary borate glasses from the system Na2O?CaO?B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crys?talline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM) and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.


2008 ◽  
Vol 1124 ◽  
Author(s):  
Melody Lyn Carter ◽  
Hui Li ◽  
Yingjie Zhang ◽  
Andrew L Gillen ◽  
Eric R Vance

AbstractHot isostatically pressed (HIPed) glass-ceramics for the immobilization of uranium-rich intermediate-level wastes and Hanford K-basin sludges were designed. These were based on pyrochlore-structured Ca(1-x)U(1+y)Ti2O7 in glass, together with minor crystalline phases. Detailed microstructural, diffraction and spectroscopic characterization of selected glass-ceramic samples has been performed, and chemical durability is adequate, as measured by both MCC-1 and PCT-B leach tests.


2013 ◽  
Vol 834-836 ◽  
pp. 309-314
Author(s):  
Zi Fan Xiao ◽  
Jin Shu Cheng ◽  
Jun Xie

A glass-ceramic belonging to the CaO-Al2O3-SiO2(CAS) system with different composition of spodumene and doping the Li2O with amount between 0~2.5 % (mass fraction) were prepared by onestage heat treatment, under sintering and crystallization temperature at 1120 °C for two hours. In this paper, differential thermal analysis, X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry and bending strength test were employed to investigate the microstructure and properties of all samples. β-wollastonite crystals were identified as the major crystalline phases, and increasing Li2O was found to be benefit for the crystallization and tiny crystalline phases remelting, resulting in the content of major crystalline phases increased first and then decreased with increasing the expense of spodumene. Meanwhile, the crystal size can be positively related with the content of Li2O. The preferable admixed dosage of spodumene can be obtained, besides the strength of glass-ceramics can be more than 90 MPa.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Sai Li ◽  
Wei Lu ◽  
Qihua Yang ◽  
Dacheng Zhou ◽  
Jianbei Qiu ◽  
...  

Glass ceramics containing Yb3+, Er3+ codoped Ba2LaF7 nanocrystals were fabricated via melt quenching method and the subsequent heating treatment. The formation of Ba2LaF7 nanocrystals in the glass ceramics was confirmed by X-ray diffraction (XRD) and transmission electron microscope (TEM). The spontaneous upconversion (UC) emission and the stimulated counterpart as a random lasing action of Er3+, which were related to the characteristic transitions of Er3+ ions, were achieved in the Yb3+, Er3+-doped Ba2LaF7 nanocrystals embedded glass ceramic hybrid. Furthermore, the absorption spectra verified the surface plasmon resonance (SPR) band of Ag, which precipitated from the matrix glasses as Ag nanoparticles (NPs). By incorporating Ag NPs in the glass ceramic hybrid, spontaneous UC emission intensity of Er3+ in visible region was significantly enhanced, while the threshold of the random lasing was decreased from 480 to 350 nJ/cm2.


2012 ◽  
Vol 424 (1-3) ◽  
pp. 75-81 ◽  
Author(s):  
S.V. Stefanovsky ◽  
A.N. Sorokaletova ◽  
B.S. Nikonov

1987 ◽  
Vol 17 (5) ◽  
pp. 475-484 ◽  
Author(s):  
A. Salomoni ◽  
E.H. Toscano ◽  
A. Caneiro ◽  
A. Montenero ◽  
G. Ondracek

Sign in / Sign up

Export Citation Format

Share Document