Shape-Controlled Synthesis of Hydroxyapatite in Organic Media

1998 ◽  
Vol 519 ◽  
Author(s):  
K. Sakamoto ◽  
A. Nakahira ◽  
M. Okazaki ◽  
J. Ichihara ◽  
M. Inoue ◽  
...  

AbstractWe have examined the effect of organic solvent on the microstructures of hydroxyapatite (HAp) formed by hydrolysis of α -tricalcium phosphate ( α -TCP) in heterogeneous solvent system (water-hydrophobic organic solvent). The shape of HAp was like ultrafine whisker (length : about 1 ∼- 4 µ m) and its size depended on the used organic solvent.As a simple hybridization, incorporation of fluoride anion (F−) into HAp was attempted in similar system to obtain fluoridated apatite [Ca10(PO4)6(OH)2−x Fx.]. The formation rate was strongly affected by the concentration of F− and reaction temperature. Although the product in water (in the absence of organic solvent) consists of fine particles less than 1 µ m, the product prepared in the heterogeneous solvent system was mixture of ultrafine particles ( ∼ 0.1 µ m) and needle-like particles (length : about 1 ∼ 4 µ m, width : ∼ 0.5 µ m). The microstructures of HAp and FHAp were controlled by hydrophobicity of organic solvent.

MRS Bulletin ◽  
1990 ◽  
Vol 15 (1) ◽  
pp. 26-33 ◽  
Author(s):  
E. James Davis ◽  
Mark F. Buehler

Fine particles can be produced via aerosol processes either by means of vapor phase reactions that produce solid or liquid particles or by reactions between a preexisting solid or liquid particle and a reactive gas. This article examines the latter processes because a strong interest has developed in the production of materials via aerosol processing. Although fine particles are frequently produced using flow systems, such as in the laminar flow aerosol reactor of McRae and his co-workers, fundamental studies of the chemical kinetics are more readily done using single microparticles or microdroplets. Design of an aerosol reactor requires knowledge of the reaction rates, for there must be a sufficient residence time of the reacting species in the reactor to complete the desired reaction.Matijević reviewed early work on preparing well-defined and very pure metal oxides by hydrolysis of alkoxide aerosol particles, and Ingebrethsen and co-workers studied the hydrolysis rates of aerosol droplets of aluminum and titanium alkoxides and mixtures of the two alkoxides. Following Matijevic and his colleagues, Okuyama et al. used the thermal decomposition of metal alkoxide vapors to produce ultrafine particles of the oxides of titanium, silicon, and aluminum. The preparation of polymeric aerosols has been studied by Partch et al. and by Ward et al. The latter investigators used single-particle techniques (the electrodynamic balance) to obtain polymerization rate data for the photochemical polymerization of acrylamide monomer microparticles.


2002 ◽  
Vol 80 (6) ◽  
pp. 699-707 ◽  
Author(s):  
Ghermes G Chilov ◽  
Vytas K Švedas

The application of the two-phase "aqueous solution – water-immiscible organic solvent" system is suggested not for effective biocatalytic synthesis, but for hydrolytic purposes. Enzymatic hydrolysis of benzylpenicillin and N-phenylacetamidodesacetoxycephalosporanic acid to corresponding antibiotic nuclei 6-aminopenicillanic and 7-aminodesacetoxycephalosporanic acids in a two-phase water–butylacetate system at pH 3–4 is proposed as an alternative to the biocatalytic hydrolysis in an alkaline medium. An experimental study has been performed and a model has been developed, which describes the influence of pH, phase volume ratio, thermodynamic constants, and initial antibiotic concentration on the effectiveness of their hydrolysis in a two-phase "aqueous solution – water-immiscible organic solvent" system. The thermodynamic evaluation of penicillin G and 7-phenylacetamidodesacetoxycephalosporanic acid hydrolysis at low pH in a two-phase aqueous solution – water-immiscible organic solvent system has demonstrated high practical potential. The suggested approach allows for the exclusion of several technological steps during the transformation of natural β-lactam antibiotics to their semi-synthetic analogues: alkaline extraction of the biosynthetic antibiotic from butylacetate followed by its enzymatic hydrolysis at pH 7.5–8.0 and further acidification of the reaction mixture, which results in the precipitation of the antibiotic nucleus. Experimental observations also revealed a specific feature of this process: the kinetic supersaturation of the antibiotic nucleus slows down the attainment of the equilibrium, which should be taken into account when further developing this approach.Key words: enzymatic hydrolysis, β-lactam antibiotic nuclei, two-phase systems, supersaturation, penicillin acylase.


Author(s):  
Chihiro Kaito ◽  
Yoshio Saito

The direct evaporation of metallic oxides or sulfides does not always given the same compounds with starting material, i.e. decomposition took place. Since the controll of the sulfur or selenium vapors was difficult, a similar production method for oxide particles could not be used for preparation of such compounds in spite of increasing interest in the fields of material science, astrophysics and mineralogy. In the present paper, copper metal was evaporated from a molybdenum silicide heater which was proposed by us to produce the ultra-fine particles in reactive gas as shown schematically in Figure 1. Typical smoke by this method in Ar gas at a pressure of 13 kPa is shown in Figure 2. Since the temperature at a location of a few mm below the heater, maintained at 1400° C , were a few hundred degrees centigrade, the selenium powder in a quartz boat was evaporated at atmospheric temperature just below the heater. The copper vapor that evaporated from the heater was mixed with the stream of selenium vapor,and selenide was formed near the boat. If then condensed by rapid cooling due to the collision with inert gas, thus forming smoke similar to that from the metallic sulfide formation. Particles were collected and studied by a Hitachi H-800 electron microscope.Figure 3 shows typical EM images of the produced copper selenide particles. The morphology was different by the crystal structure, i.e. round shaped plate (CuSe;hexagona1 a=0.39,C=l.723 nm) ,definite shaped p1 ate(Cu5Se4;Orthorhombic;a=0.8227 , b=1.1982 , c=0.641 nm) and a tetrahedron(Cu1.8Se; cubic a=0.5739 nm). In the case of compound ultrafine particles there have been no observation for the particles of the tetrahedron shape. Since the crystal structure of Cu1.8Se is the anti-f1uorite structure, there has no polarity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chiranjeevi Thulluri ◽  
Ravi Balasubramaniam ◽  
Harshad Ravindra Velankar

AbstractCellulolytic enzymes can readily access the cellulosic component of lignocellulosic biomass after the removal of lignin during biomass pretreatment. The enzymatic hydrolysis of cellulose is necessary for generating monomeric sugars, which are then fermented into ethanol. In our study, a combination of a deep eutectic (DE) mixture (of 2-aminoethanol and tetra-n-butyl ammonium bromide) and a cyclic ether (tetrahydrofuran) was used for selective delignification of rice straw (RS) under mild conditions (100 °C). Pretreatment with DE-THF solvent system caused ~ 46% delignification whereas cellulose (~ 91%) and hemicellulose (~ 67%) recoveries remained higher. The new solvent system could be reused upto 10 subsequent cycles with the same effectivity. Interestingly, the DE-THF pretreated cellulose showed remarkable enzymatic hydrolysability, despite an increase in its crystallinity to 72.3%. Contrary to conventional pretreatments, we report for the first time that the enzymatic hydrolysis of pretreated cellulose is enhanced by the removal of lignin during DE-THF pretreatment, notwithstanding an increase in its crystallinity. The current study paves way for the development of newer strategies for biomass depolymerization with DES based solvents.


1992 ◽  
Vol 287 ◽  
Author(s):  
Young-Wook Kim ◽  
June-Gunn Lee

ABSTRACTTape casting behavior of submicron silicon nitride powder(UBE SN–E1O) with Al2O3 and Y2O3 as sintering additives was studied. It was found that Hypermer KD1(polymeric dispersant) is effective dispersant for submicron silicon nitride in organic solvent system.Optimization of the rheological properties of the slurries allows the homogeneous green tapes with green densities of 45–50% theoretical. The cast tapes could be sintered to closed porosity with densities of higher than 96% theoretical.


2021 ◽  
Author(s):  
Mandana Ehsanipour

This study compared two acidic pretreatments on Source-Separated Organic (SSO) waste preprocessed by Aufbereitungs Technology and System thermal-screw, on the basis of fermentable sugars for bioethanol production. The result showed that the SSO contained on average 27% glucan, 5.4% xylan, 1.2% arabinan, 5.7% mannan and 1.2% galactan. Dilute sulfuric acid pretreatment (at 121°C and 16.2 psi) was insufficient to solubilize cellulose and hemicellulose and did not remove much of the lignin. Cellulose-solvent and Organic Solvent-based Lignocellulose Fractionation (COSLIF) (at 50°C and atmospheric pressure) generated high glucose yield (70%). Substituting ethanol for acetone as organic solvent increased the yield to 89.5%. Fermentation using Zymomonas mobilis 8b with this hydrolysate confirmed the pretreatment is promising for the SSO conversion. Amenability of the SSO for biofuel production is validated. Enzymatic hydrolysis of both pretreatments using Accellerase 1500 is preferred over Celluclast 1.5L due to higher activity. Future work includes design of an appropriate batch and/or continuous bioreactor, and further understanding of Zymomonas mobilis 8b.


Sign in / Sign up

Export Citation Format

Share Document