Ionic Space Charge Relaxation and High Dielectric Permittivity in Polyethylene Oxide

1998 ◽  
Vol 548 ◽  
Author(s):  
A. Wagner ◽  
H. Kliem

ABSTRACTThin films (0.3μm to 11.2 μm) of Polyethylene Oxide (PEO) with molecular weights from 6 × 103 to 4 × 105 were prepared from aqueous solutions by a spin technique as AI-PEO-AI structures, or as AI-PEO-Si structures. Dielectric measurements (capacitance and loss angle) were carried out in a frequency range 3 mHz ≤ f ≤ 1 MHz in atmospheres of different relative humidity (0% r.h. to 75% r.h.) and at different temperatures (293 K to 323 K). The nominal dielectric permittivity exhibits a remarkable dependence on the sample thickness and the relative humidity. We find a true volume polarization in the high frequency range and a thermally activated relaxation process in the low frequency range, whose time constant is shifted towards high frequencies with increasing r.h.. It is considered that due to the absorbed dipolar water molecules chemical bonds within the sample are broken and quasi-free ions are generated. These ions move through the sample to the electrode interfaces and form an ionic space charge. We assume that at the PEO-Al interface an oxide layer is formed, which is impermeable for these ions. The transit times and the drift velocities of the ions are almost independent of the electric field strength in the low-field limit. Therefore we conclude that the movement of the ions can be described by a multiwell potential model, where the transition probability between neighbored wells is thermally activated.

Geophysics ◽  
1994 ◽  
Vol 59 (8) ◽  
pp. 1201-1210 ◽  
Author(s):  
Duff C. Stewart ◽  
Walter L. Anderson ◽  
Thomas P. Grover ◽  
Victor F. Labson

A new instrument designed for frequency‐domain sounding in the depth range 0–10 m uses short coil spacings of 5 m or less and a frequency range of 300 kHz to 30 MHz. In this frequency range, both conduction currents (controlled by electrical conductivity) and displacement currents (controlled by dielectric permittivity) are important. Several surface electromagnetic survey systems commonly used (generally with frequencies less than 60 kHz) are unsuitable for detailed investigation of the upper 5 m of the earth or, as with ground‐penetrating radar, are most effective in relatively resistive environments. Most computer programs written for interpretation of data acquired with the low‐frequency systems neglect displacement currents, and are thus unsuited for accurate high‐frequency modeling and interpretation. New forward and inverse computer programs are described that include displacement currents in layered‐earth models. The computer programs and this new instrument are used to evaluate the effectiveness of shallow high‐frequency soundings based on measurement of the tilt angle and the ellipticity of magnetic fields. Forward model studies indicate that the influence of dielectric permittivity provides the ability to resolve thin layers, especially if the instrument frequency range can be extended to 50 MHz. Field tests of the instrument and the inversion program demonstrate the potential for detailed shallow mapping wherein both the resistivity and the dielectric permittivity of layers are determined. Although data collection and inversion are much slower than for low‐frequency methods, additional information is obtained inasmuch as there usually is a permittivity contrast as well as a resistivity contrast at boundaries between different materials. Determination of dielectric permittivity is particularly important for hazardous waste site characterization because the presence of some contaminants may have little effect on observed resistivity but a large effect on observed permittivity.


RSC Advances ◽  
2015 ◽  
Vol 5 (19) ◽  
pp. 14768-14779 ◽  
Author(s):  
K. Santhosh Kumar ◽  
Suresh Pittala ◽  
Srinath Sanyadanam ◽  
Pradip Paik

In this study, we introduce a single/few-layered graphene oxide (GO) synthesized with ultrasonication, and demonstrate its high dielectric permittivity in the frequency range of 20 Hz to 2 MHz and temperature range of 30 °C to 180 °C.


Author(s):  
S. F. Khor ◽  
Z. A. Talib ◽  
W. M. Daud ◽  
H. A. A. Sidek ◽  
W. M. M. Yunus ◽  
...  

(ZnO)30(MgO)x(P2O5)70-x glasses of the composition x = 5, 8 and 13 mol % have been prepared by melt quenching technique. The dielectric permittivity (89) and loss factor (8:) were measured in the frequency range from 0.01 Hz to 1 MHz and in the temperature range 303 to 573 K . From the results there are evidence of dipolar relaxation occurring between 103 – 106 Hz while at low frequency the spectrum is dominated by dc conduction which manifested by the 1/@ slope of loss factor plot. Value of the relaxing frequency (@p) plotted against 1/T shows one electrical transportation mechanism. The empirical data was sufficiently fitted by using Harviliak-Negami equation.


2018 ◽  
Vol 60 (2) ◽  
pp. 265
Author(s):  
В.Т. Аванесян ◽  
А.В. Ракина ◽  
В.Г. Пак ◽  
М.М. Сычев

AbstractThe frequency dependences of dielectric parameters of zinc sulfide electroluminescent polycrystalline structures doped with copper are studied in the dark and under light excitation in the visible wavelength range. A positive photodielectric effect most pronounced in the low-frequency range was revealed. The experimental results are explained within framework of formation of a space charge in the bulk of a semiconductor. The analysis of data indicates they can be correlated with luminance characteristics of an electroluminescent layer.


1995 ◽  
Vol 4 (4) ◽  
pp. 096369359500400 ◽  
Author(s):  
G.M. Tsangaris ◽  
G.C. Psarras

The dielectric behaviour of composites with epoxy resin and kevlar fibres is investigated in a wide range of frequency and temperature. Dielectric permittivity is increasing with filler content and temperature, being always higher in the low frequency range. Dielectric permittivity and loss of the composites is mostly affected by interfacial polarization arising from inhomogeneities at interfaces introduced by the filler.


2007 ◽  
Vol 561-565 ◽  
pp. 551-555 ◽  
Author(s):  
Lai Jun Liu ◽  
Hui Qing Fan

The effect of stoichiometry, i.e. Ca/Cu ratios (CaCu3xTi4O12, x = 0.8, 0.9, 1.0, 1.1 and 1.2) on the microstructure and electrical properties was investigated. The grain sizes of CaCu3xTi4O12 composition increased sharply with the increase of copper, from ~1 μm with x = 0.8 to ~50 μm with x = 1.2. The real part of dielectric permittivity changed dramatically, the pellet with x = 1.0 had the highest dielectric permittivity ~160, 000 at 1 kHz. Furthermore, the dielectric permittivity of all pellets was impressively large values (between 10, 000 to 1, 000,000 at 100 Hz) and was nearly constant over a wide frequency range between 100 Hz to ~100 MHz. However, the dielectric permittivity of CaCu3xTi4O12 composition is not consistent with the amount of copper and cell parameters and grain sizes. Impedance spectroscopy exhibited that the CaCu3xTi4O12 composition had two semicircle at least at high frequency (~ 107 Hz) and low frequency (<100 Hz), respectively. The grain and grain boundary of the compositions had different impedance and relaxation behavior.


Sign in / Sign up

Export Citation Format

Share Document