Lateral Solid Phase Crystallization of Amorphous Silicon Under High Pressure

1999 ◽  
Vol 557 ◽  
Author(s):  
Seung-Mahn Lee ◽  
Rajiv K. Singh

AbstractWe have investigated a novel surface-seeded crystallization technique at low processing temperatures (≤ 550°C) and high pressures (10MPa~25MPa) using polished polycrystalline diamond seeds. By controlling the high pressure, the nucleation and growth of silicon can be controlled to obtain improved quality silicon films on amorphous substrates at low temperatures. Depending on the annealing temperature and applied pressure, the orientation of crystallized silicon thin films varies as seen by x-ray diffraction and transmission electron microscopy results. In addition, crystallization of amorphous silicon thin films has effect on their roughness.

2001 ◽  
Vol 664 ◽  
Author(s):  
Marek A. T. Izmajlowicz ◽  
Neil A. Morrison ◽  
Andrew J. Flewitt ◽  
William I. Milne

ABSTRACTFor application to active matrix liquid crystal displays (AMLCDs), a low temperature (< 600 °C) process for the production of polycrystalline silicon is required to permit the use of inexpensive glass substrates. This would allow the integration of drive electronics onto the display panel. Current low temperature processes include excimer laser annealing, which requires expensive equipment, and solid phase crystallization, which requires high temperatures. It is known that by adding small amounts of metals such as nickel to the amorphous silicon the solid phase crystallization temperature can be significantly reduced. The rate of this solid phase metal induced crystallization is increased in the presence of an electric field. Previous work on field aided crystallization has reported crystal growth that either proceeds towards the positive terminal or is independent of the direction of the electric field. In this work, extensive investigation has consistently revealed directional crystallization, from the positive to the negative terminal, of amorphous silicon thin films during heat treatment in the presence of an electric field. This is the first time that this phenomenon has been reported. Models have been proposed for metal induced crystallization with and without an applied electric field in which a reaction between Ni and Si to produce NiSi is the rate-limiting step. The crystallization rate is increased in the presence of an electric field through the drift of positive Ni ions.


2007 ◽  
Vol 989 ◽  
Author(s):  
Tining Su ◽  
Tong Ju ◽  
P. Craig Taylor ◽  
Pauls Stradins ◽  
Yueqin Xu ◽  
...  

AbstractSolid-phase crystallization and the subsequent re-hydrogenation of the amorphous silicon thin films provides a low cost approach for thin-film crystalline Si:H-based photovoltaic devices. During the hydrogen effusion, significant lattice reconstruction occurs, as hydrogen is driven out of the film, accompanied by creation and migration of a large number of dangling bonds. We used electron-spin-resonance (ESR) to study evolution of the local order surrounding these dangling bonds during crystallization. When samples made by both plasma enhanced chemical vapor deposition (PECVD) and the and hot wire CVD (HWCVD) are heated to 560°C, hydrogen effuses within 30 min, giving rise to H-effused defect densities of about 5x1018 cm-3. Further heating at 560°C results in crystallizati°n in the HWCVD sample after about 200 min. On the other hand, PECVD samples crystallize only when heated up to 580°C, and then only after much longer times (Dt ~ 1300 min) [1,2]. ESR defects in both samples persist at the 5x1018 cm-3 level as long as the sample remains amorphous during the grain nucleation period. As the crystallites appear, the defect densities gradually decrease and saturate at about 3x1017 cm-3 as the crystallization is completed, both in HWCVD and PECVD samples.In the H-effused states before crystallization, the ESR signals for both the HWCVD and PECVD samples show significant exchange-narrowing, suggesting that the defects are probably clustered. As the sample crystallizes, the defect clustering largely disappears, yet the line-widths in fully crystallized films are somewhat narrower than those in typical micro-crystalline silicon thin films as reported earlier [3]. This difference is probably due the specific structures of the grain boundaries in the present study. The effect of re-hydrogenation on both the H-effused amorphous and crystallized states will be discussed.


ETRI Journal ◽  
1997 ◽  
Vol 19 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Yoon-Ho Song Song ◽  
Seung-Youl Kang Kang ◽  
Kyoung Ik Cho Cho ◽  
Hyung Joun Yoo Yoo

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Lukas Terkowski ◽  
Iain W. Martin ◽  
Daniel Axmann ◽  
Malte Behrendsen ◽  
Felix Pein ◽  
...  

2020 ◽  
Vol 984 ◽  
pp. 91-96
Author(s):  
Cheng Liu ◽  
Yu Hao Song ◽  
Dong Yang Li ◽  
Wei Li

The structural and optical properties of amorphous silicon (a-Si) and Al-dispersed amorphous silicon (a-Si:Al) thin films irradiated by femtosecond (fs) laser at various energy densities are investigated comparatively in this article. It is found that there is an uneven crystallization in both amorphous thin films by means of optical microscopy and laser Raman spectroscopy respectively. The crystallization in each pulse spot area is gradually weakened from the center to the edge along with the energy dispersion of laser irradiation. The laser induced crystallization in a-Si thin films begins early and develops more extensively compared to that in a-Si:Al thin films, and Al nanoparticles inhibit somehow the crystallization of a-Si in a-Si:Al thin films.


Sign in / Sign up

Export Citation Format

Share Document