Magnetic Domain Structures in Cerium—Doped Fe80B20, Fe80B16Si2C2, and Fe78B13Si9 Glassy Ribbons

1985 ◽  
Vol 58 ◽  
Author(s):  
G. S. Canright ◽  
D. M. Kroeger

ABSTRACTThe addition of cerium in parts—per—million quantities has been shown to be effective in inhibiting the annealing embrittlement of melt—spun amorphous ribbons [1]. The effects of cerium doping on magnetic domain structures are reported in this paper. Domain structures have been observed using the Bitter colloid technique on the free surfaces of asquenched ribbons, as well as on both surfaces of ribbonswhich have been thinned by electropolishing. In the binary and quaternary alloys, the optimum (in terms of mechanical properties) cerium content gives ribbons which are apparently free of quenched—in stresses, since they lack the commonly observed “maze domains” which are found for both undoped and excessively doped ribbons. In contrast, the ternary alloy, which shows little decrease in annealing embrittlement versus doping, is free of maze domains in the as—quenched condition, with or without doping. The effect on the former two alloys is interpreted in terms of enhanced stress—relief during the quench.

2020 ◽  
Vol 11 (3-2020) ◽  
pp. 156-162
Author(s):  
K. A. Svyrydova ◽  
◽  
V. V. Burkovetskii ◽  
T. V. Tsvetkov ◽  
V. I. Parfeniy ◽  
...  

The results of the structural studies and hardness measurements of bi-and three-layer samples obtained by high pressure torsion of melt-spun ribbons of Al-based alloys with amorphous and crystalline structures have been presented. It has been established that straining of amorphous ribbons results in formation of nanocomposite structure while that refinement of crystalline structure and increase of microstrains takes place in crystalline ribbon. It has been found that the hardness of the consolidated samples increases with the increase of the deformation level up to 4,7 GPa.


Author(s):  
Sonoko Tsukahara ◽  
Tadami Taoka ◽  
Hisao Nishizawa

The high voltage Lorentz microscopy was successfully used to observe changes with temperature; of domain structures and metallurgical structures in an iron film set on the hot stage combined with a goniometer. The microscope used was the JEM-1000 EM which was operated with the objective lens current cut off to eliminate the magnetic field in the specimen position. Single crystal films with an (001) plane were prepared by the epitaxial growth of evaporated iron on a cleaved (001) plane of a rocksalt substrate. They had a uniform thickness from 1000 to 7000 Å.The figure shows the temperature dependence of magnetic domain structure with its corresponding deflection pattern and metallurgical structure observed in a 4500 Å iron film. In general, with increase of temperature, the straight domain walls decrease in their width (at 400°C), curve in an iregular shape (600°C) and then vanish (790°C). The ripple structures with cross-tie walls are observed below the Curie temperature.


Author(s):  
A. R. Lang

AbstractX-ray topography provides a non-destructive method of mapping point-by-point variations in orientation and reflecting power within crystals. The discovery, made by several workers independently, that in nearly perfect crystals it was possible to detect individual dislocations by X-ray diffraction contrast started an epoch of rapid exploitation of X-ray topography as a new, general method for assessing crystal perfection. Another discovery, that of X-ray Pendellösung, led to important theoretical developments in X-ray diffraction theory and to a new and precise method for measuring structure factors on an absolute scale. Other highlights picked out for mention are studies of Frank-Read dislocation sources, the discovery of long dislocation helices and lines of coaxial dislocation loops in aluminium, of internal magnetic domain structures in Fe-3 wt.% Si, and of stacking faults in silicon and natural diamonds.


Alloy Digest ◽  
2020 ◽  
Vol 69 (8) ◽  

Abstract AK Steel Type 304L is a chromium-nickel austenitic stainless steel. It is an extra low-carbon variation of Type 304 with a 0.030% maximum carbon content that eliminates carbide precipitation due to welding. As a result, this alloy can be used in the “as-welded” condition, even in severe corrosive conditions. In many cases it eliminates the necessity of annealing weldments except for applications specifying stress relief. Type 304L has slightly lower mechanical properties than Type 304. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance, corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1324. Producer or Source: AK Steel Corporation.


1999 ◽  
Vol 577 ◽  
Author(s):  
A. Gavrin ◽  
C. Sellers ◽  
S.H. Liouw

ABSTRACTWe have used Magnetic Force Microscopy (MFM) to study the magnetic domain structures of melt-spun Nd-Fe-B ribbons. The ribbons are commercial products (Magnequench International, Inc. MQP-B and MQP-B+) with a thickness of approximately 20 microns. These materials have identical composition, Nd12.18B5.36Fe76.99Co5.46, but differ in quenching conditions. In order to study the distribution of domain sizes through the ribbon thickness, we have prepared cross-sectional samples in epoxy mounts. In order to avoid artifacts due to tip-sample interactions, we have used high coercivity CoPt coated MFM tips. Our studies show domain sizes typically ranging from 50-200 nm in diameter. This is in agreement with studies of similar materials in which domains were investigated in the plane of the ribbon. We also find that these products differ substantially in mean domain size and in the uniformity of the domain sizes as measured across the ribbon. While the B+ material shows nearly uniform domain sizes throughout the cross section, the B material shows considerably larger domains on one surface, followed by a region in which the domains are smaller than average. This structure is presumably due to the differing quench conditions. The region of coarse domains varies in thickness, disappearing in some areas, and reaching a maximum thickness of 2.75 µm in others. We also describe bulk magnetic measurements, and suggest that.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Munusamy Kuppan ◽  
Daichi Yamamoto ◽  
Genta Egawa ◽  
Sivaperuman Kalainathan ◽  
Satoru Yoshimura

Abstract(Bi1−xLax)(Fe,Co)O3 multiferroic magnetic film were fabricated using pulsed DC (direct current) sputtering technique and demonstrated magnetization reversal by applied electric field. The fabricated (Bi0.41La0.59)(Fe0.75Co0.25)O3 films exhibited hysteresis curves of both ferromagnetic and ferroelectric behavior. The saturated magnetization (Ms) of the multiferroic film was about 70 emu/cm3. The squareness (S) (= remanent magnetization (Mr)/Ms) and coercivity (Hc) of perpendicular to film plane are 0.64 and 4.2 kOe which are larger compared with films in parallel to film plane of 0.5 and 2.5 kOe. The electric and magnetic domain structures of the (Bi0.41La0.59)(Fe0.75Co0.25)O3 film analyzed by electric force microscopy (EFM) and magnetic force microscopy (MFM) were clearly induced with submicron scale by applying a local electric field. This magnetization reversal indicates the future realization of high performance magnetic device with low power consumption.


2021 ◽  
Vol 286 ◽  
pp. 129256
Author(s):  
Ercan Karaköse ◽  
Mustafa Keskin

1979 ◽  
Vol 50 (B3) ◽  
pp. 2384-2386 ◽  
Author(s):  
S. R. Herd ◽  
K. Y. Ahn

Sign in / Sign up

Export Citation Format

Share Document