Nondestructive Evaluation of Fatigue in Titanium Alloys

1999 ◽  
Vol 591 ◽  
Author(s):  
H. Rösner ◽  
N. Meyendorf ◽  
S. Sathish ◽  
T.E. Matikas

ABSTRACTDissipated heat has been measured by thermographic technique during fatigue experiments on Ti-6AI-4V. Surface temperature of the specimen was found sensitive to the amount of fatigue damage accumulated in the material. An increased heat dissipation due to fatigue can be related to continuous change in the microstructure (increased dislocation density, stacking faults etc.) of the material. A method based on passive thermography can be proposed to monitor damage accumulation in Ti-6Al-4V due to cyclic loading.

2014 ◽  
Vol 2014.63 (0) ◽  
pp. _302-1_-_302-2_
Author(s):  
Hayato IZUMI ◽  
Toshifumi KITA ◽  
Kentaro TANAKA ◽  
Shoji KAMIYA

2004 ◽  
Vol 46 (6) ◽  
pp. 309-313
Author(s):  
Yutaka Iino ◽  
Hideo Yano

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
František Vejmělka ◽  
Jan Okrouhlík ◽  
Matěj Lövy ◽  
Gabriel Šaffa ◽  
Eviatar Nevo ◽  
...  

AbstractThe relatively warm and very humid environment of burrows presents a challenge for thermoregulation of its mammalian inhabitants. It was found that African mole-rats dissipate body heat mainly through their venter, and social mole-rats dissipate more body heat compared to solitary species at lower temperatures. In addition, the pattern of the ventral surface temperature was suggested to be homogeneous in social mole-rats compared to a heterogeneous pattern in solitary mole-rats. To investigate this for subterranean rodents generally, we measured the surface temperatures of seven species with different degrees of sociality, phylogeny, and climate using infrared thermography. In all species, heat dissipation occurred mainly through the venter and the feet. Whereas the feet dissipated body heat at higher ambient temperatures and conserved it at lower ambient temperatures, the ventral surface temperature was relatively high in all temperatures indicating that heat dissipation to the environment through this body region is regulated mainly by behavioural means. Solitary species dissipated less heat through their dorsum than social species, and a tendency for this pattern was observed for the venter. The pattern of heterogeneity of surface temperature through the venter was not related to sociality of the various species. Our results demonstrate a general pattern of body heat exchange through the three studied body regions in subterranean rodents. Besides, isolated individuals of social species are less able to defend themselves against low ambient temperatures, which may handicap them if staying alone for a longer period, such as during and after dispersal events.


Sign in / Sign up

Export Citation Format

Share Document