Performance of a Ferroelectric Tunable Pre-Select Filter/Low Noise Amplifier Hybrid Circuit

1999 ◽  
Vol 603 ◽  
Author(s):  
Guru Subramanyam ◽  
Felix A. Miranda ◽  
Robert R. Romanofsky ◽  
Fred Van Keuls ◽  
Chonglin Chen

AbstractIn this paper we discuss the performance of a proof-of-concept of a tunable band pass filter (BPF)/Low Noise Amplifier (LNA) hybrid circuit for a possible gain-compensated down-converter targeted for the next generation of K-band satellite communication systems. Electrical tunability of the filter is obtained through the nonlinear electric field dependence of the relative dielectric constant of a ferroelectric thin-film such as strontium titanate (SrTiO3) or barium strontium titanate (BaxSr1−xTiO3). Experimental results show that the BPFs are tunable by more than 5%, with a bipolar biasing scheme employed. The BPF/LNA tunable hybrid circuit was used to study the effect of tuning on the hybrid circuit's performance especially on the amplifier's noise-figure and the gain.

2012 ◽  
Vol 99 (4) ◽  
pp. 585-595 ◽  
Author(s):  
Runbo Ma ◽  
Wenmei Zhang ◽  
Guorui Han ◽  
Li Li ◽  
Xinwei Chen ◽  
...  

Author(s):  
Cherechi Ndukwe ◽  
Oliver Ozioko ◽  
Okere A U

This paper presents the design, simulation and fabrication of a low noise amplifier with high gain of 1.5GHz. In communication systems, there is always difficulty in distinguishing the received signal from noise at very low signal powers. A low noise amplifier (LNA) is an effective and low-cost way of enhancing this signal quality through signal amplification at the receiver. In this work, LNA simulation and a novel design was carried out using the N76038A field effect transistor (FET). To ensure it is stable over a wide range of frequencies, the input and output stability of the transistor were plotted over its operating frequencies (0.1 GHz to 18 GHz). Constant gain and noise figure circles were plotted and the source impedance properly chosen. The input network was matched to the source impedance and conjugate matching used to match the output. The schematic was converted to microstrip and produced on a printed circuit board. Testing was carried out using the vector network analyser (VNA) and matching errors then corrected by calibration process. The fabricated LNA has a gain of 13.76dB and noise figure of 1.57dB which is in close agreement with a simulation result of 14.25dB and 1.56dB respectively.


2007 ◽  
Vol 17 (7) ◽  
pp. 546-548 ◽  
Author(s):  
T. Gaier ◽  
L. Samoska ◽  
A. Fung ◽  
W. R. Deal ◽  
V. Radisic ◽  
...  

2018 ◽  
Vol 7 (3.6) ◽  
pp. 84
Author(s):  
N Malika Begum ◽  
W Yasmeen

This paper presents an Ultra-Wideband (UWB) 3-5 GHz Low Noise Amplifier (LNA) employing Chebyshev filter. The LNA has been designed using Cadence 0.18um CMOS technology. Proposed LNA achieves a minimum noise figure of 2.2dB, power gain of 9dB.The power consumption is 6.3mW from 1.8V power supply.  


2017 ◽  
Vol 7 (1.3) ◽  
pp. 69
Author(s):  
M. Ramana Reddy ◽  
N.S Murthy Sharma ◽  
P. Chandra Sekhar

The proposed work shows an innovative designing in TSMC 130nm CMOS technology. A 2.4 GHz common gate topology low noise amplifier (LNA) using an active inductor to attain the low power consumption and to get the small chip size in layout design. By using this Common gate topology achieves the noise figure of 4dB, Forward gain (S21) parameter of 14.7dB, and the small chip size of 0.26 mm, while 0.8mW power consuming from a 1.1V in 130nm CMOS gives the better noise figure and improved the overall performance.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 448
Author(s):  
S Manjula ◽  
M Malleshwari ◽  
M Suganthy

This paper presents a low power Low Noise Amplifier (LNA) using 0.18µm CMOS technology for ultra wide band (UWB) applications. gm boosting common gate (CG) LNA is designed to improve the noise performance.  For the reduction of on chip area, active inductor is employed at the input side of the designed LNA for input impedance matching. The proposed UWB LNA is designed using Advanced Design System (ADS) at UWB frequency of 3.1-10.6 GHz. Simulation results show that the gain of 10.74+ 0.01 dB, noise figure is 4.855 dB, input return loss <-13 dB and 12.5 mW power consumption.  


Sign in / Sign up

Export Citation Format

Share Document