Open-Circuit Voltage Physics in Amorphous Silicon Solar Cells

2000 ◽  
Vol 609 ◽  
Author(s):  
L. Jiang ◽  
J. H. Lyou ◽  
S. Rane ◽  
E. A. Schiff ◽  
Q. Wang ◽  
...  

ABSTRACTWe have performed computer calculations to explore effects of the p/i interface on the open-circuit voltage in a-Si:H based pin solar cells. The principal conclusions are that interface limitation can occur for values of VOC significantly below the built-in potential VBI of a cell, and that the effects can be understood in terms of thermionic emission of electrons from the intrinsic layer into the p-layer. We compare measurements of VOC and electroabsorption estimates of VBI with the model calculations. We conclude that p/i interface limitation is important for current a-Si:H based cells, and that the conduction band offset between the p and i layers is as important as the built-in potential for future improvements to VOC.

2012 ◽  
Vol 485 ◽  
pp. 454-456
Author(s):  
Lan E Luo ◽  
Chun Liang Zhong

The properties of the a-Si:H/c-Si interface are one of the critical issues for the photovoltaic application. The effects of the interface states on the open-circuit voltage VOC were performed by a set of simulations. VOC decreases with Dit increasing, especially at high values of Dit, since the interface states act as recombination centers to decrease the excess minority carrier density in c-Si. Since the conduction band offset ∆EC can saturate part of interface states, VOC increasing with ∆EC increasing.


2015 ◽  
Vol 5 (6) ◽  
pp. 1757-1761 ◽  
Author(s):  
Daniel Amkreutz ◽  
William D. Barker ◽  
Sven Kuhnapfel ◽  
Paul Sonntag ◽  
Onno Gabriel ◽  
...  

2015 ◽  
Vol 212 (4) ◽  
pp. 840-845 ◽  
Author(s):  
Simon Hänni ◽  
Mathieu Boccard ◽  
Grégory Bugnon ◽  
Matthieu Despeisse ◽  
Jan-Willem Schüttauf ◽  
...  

2003 ◽  
Vol 762 ◽  
Author(s):  
Jessica M. Owens ◽  
Daxing Han ◽  
Baojie Yan ◽  
Jeffrey Yang ◽  
Kenneth Lord ◽  
...  

AbstractThe open-circuit voltage (Voc) of mixed-phase hydrogenated silicon solar cells has been found to increase after light soaking. In this study, we use micro-Raman to investigate the heterogeneous structure of solar cells in the amorphous-to-nanocrystalline transition region. For a cell with Voc = 0.981 V, Raman spectra show a typical broad Gaussian lineshape around 480 cm-1, a signature of typical amorphous material. A cell with Voc = 0.674 V displays a sharp Lorentzian peak around 516 cm-1, indicative of nanocrystallinity. A cell with Voc = 0.767 V was systematically scanned for 20 different positions in 500 μm increments. Most spectra show a typical Gaussian lineshape around 480 cm-1, several spectra reveal a hint of a nanocrystalline shoulder around 512 cm-1, and one spectrum exhibits a distinct nanocrystalline peak. We conclude that the nanocrystallite distribution in the mixed-phase material is very non-uniform even within a mm dot. This result provides direct evidence supporting a recently proposed two-diode equivalent-circuit model to explain the light-induced effect.


Sign in / Sign up

Export Citation Format

Share Document