scholarly journals Understanding the Microstructure and Properties of Components Fabricated by Laser Engineered Net Shaping (LENS)

2000 ◽  
Vol 625 ◽  
Author(s):  
M. L. Griffith ◽  
M. T. Ensz ◽  
J. D. Puskar ◽  
C. V. Robino ◽  
J. A. Brooks ◽  
...  

AbstractLaser Engineered Net Shaping (LENS) is a novel manufacturing process for fabricating metal parts directly from Computer Aided Design (CAD) solid models. The process is similar to rapid prototyping technologies in its approach to fabricate a solid component by layer additive methods. However, the LENS technology is unique in that fully dense metal components with material properties similar to wrought materials can be fabricated. The LENS process has the potential to dramatically reduce the time and cost required realizing functional metal parts. In addition, the process can fabricate complex internal features not possible using existing manufacturing processes. The real promise of the technology is the potential to manipulate the material fabrication and properties through precision deposition of the material, which includes thermal behavior control, layered or graded deposition of multi-materials, and process parameter selection.

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 685
Author(s):  
Manuel Prado-Velasco ◽  
Rafael Ortiz-Marín

The emergence of computer-aided design (CAD) has propelled the evolution of the sheet metal engineering field. Sheet metal design software tools include parameters associated to the part’s forming process during the pattern drawing calculation. Current methods avoid the calculation of a first pattern drawing of the flattened part’s neutral surface, independent of the forming process, leading to several methodological limitations. The study evaluates the reliability of the Computer Extended Descriptive Geometry (CeDG) approach to surpass those limitations. Three study cases that cover a significative range of sheet metal systems are defined and the associated solid models and patterns’ drawings are computed through Geogebra-based CeDG and two selected CAD tools (Solid Edge 2020, LogiTRACE v14), with the aim of comparing their reliability and accuracy. Our results pointed to several methodological lacks in LogiTRACE and Solid Edge that prevented to solve properly several study cases. In opposition, the novel CeDG approach for the computer parametric modeling of 3D geometric systems overcame those limitations so that all models could be built and flattened with accuracy and without methodological limitations. As additional conclusion, the success of CeDG suggests the necessity to recover the relevance of descriptive geometry as a key core in graphic engineering.


Author(s):  
Juan Carlos Campos Rubio ◽  
Eduardo Romeiro Filho

This chapter presents the rapid prototyping and manufacturing concepts applied as means to reducing time between jewellery designs and manufacturing process. Different processes on jewellery modelling production are presented. Nowadays, the use of technologies as CAD/CAM - Computer Aided Design and Manufacturing in high production companies are very disseminated. However, the implementation of these resources at the design and manufacturing processes of jewels and fashion accessories, in small and medium size businesses, is still insipient. As reference, is presented the situation observed in small and medium companies located in Minas Gerais, Brazil.


2019 ◽  
Vol 20 (3) ◽  
pp. 301
Author(s):  
Benoit Rosa ◽  
Maxence Bigerelle ◽  
Antoine Brient ◽  
Serge Samper

Choosing appropriate manufacturing processes to create functional surfaces is a challenging issue for some industrials. A specific surface finish can be obtained by different manufacturing processes, each of them having a different economic impact. Currently, no tool could guarantee the surface function through the choice of a manufacturing process and its associated operating parameters. This paper aims at discussing about a framework of models for selecting conventional or innovative manufacturing processes and their associated parameters with regards to surface topographies and textures. To achieve this, a concept of decomposition of database is introduced. Manufacturing processes such as, electro discharge machining, water jet machining (used for texturing surfaces), sandblasting and laser cladding are modelled. Finally, a concept that links such a database with computer aided design (CAD) software in order to integrate surfaces functionalities and manufacturing processes directly into the design step is discussed.


2005 ◽  
Vol 5 (3) ◽  
pp. 188-197 ◽  
Author(s):  
J. Corney ◽  
C. Hayes ◽  
V. Sundararajan ◽  
P. Wright

The vision of fully automated manufacturing processes was conceived when computers were first used to control industrial equipment. But realizing this goal has not been easy; the difficulties of generating manufacturing information directly from computer aided design (CAD) data continued to challenge researchers for over 25 years. Although the extraction of coordinate geometry has always been straightforward, identifying the semantic structures (i.e., features) needed for reasoning about a component’s function and manufacturability has proved much more difficult. Consequently the programming of computer controlled manufacturing processes such as milling, cutting, turning and even the various lamination systems (e.g., SLA, SLS) has remained largely computer aided rather than entirely automated. This paper summarizes generic difficulties inherent in the development of feature based CAD/CAM (computer aided manufacturing) interfaces and presents two alternative perspectives on developments in manufacturing integration research that have occurred over the last 25 years. The first perspective presents developments in terms of technology drivers including progress in computational algorithms, enhanced design environments and faster computers. The second perspective describes challenges that arise in specific manufacturing applications including multiaxis machining, laminates, and sheet metal parts. The paper concludes by identifying possible directions for future research in this area.


Author(s):  
Jack Chang ◽  
Mark Ganter ◽  
Duane Storti

Abstract Computer-aided design/manufacturing (CAD/CAM) systems intended to support automated design and manufacturing applications such as shape generation and solid free-form fabrication (SFF) must provide not only methods for creating and editing models of objects to be manufactured, but also methods for interrogating the models. Interrogation refers to any process that derives information from the model. Typical interrogation tasks include determine surface area, volume or inertial properties, computing surface points and normals for rendering, and computing slice descriptions for SFF. While currently available commercial modeling systems generally employ a boundary representation (B-rep) implementation of solid modeling, research efforts have considered implicit modeling schemes as a potential source of improved robustness. Implicit implementations are available for a broad range of modeling operations, but interrogation operations have been widely considered too costly for many applications. This paper describes a method based on interval analysis for interrogating implicit solid models that aims at achieving both robustness and efficiency.


2011 ◽  
Vol 328-330 ◽  
pp. 520-523
Author(s):  
Yong Ping Jin ◽  
Ming Hu

Directly driven by CAD model, based on principle of discrete-superposition, rapid prototyping technology is the generic terms of rapid manufacturing 3-dimensional physical entities with any complex shape. One of its main development trends is direct rapid manufacturing for metal parts. Up to now, there are many methods utilizing laser beam containing selective laser melting, selective laser sintering and laser engineered net shaping. Research and development of these means for direct rapid metal manufacturing are presented in this paper. Digital direct rapid manufacturing for metal parts represents development direction of advanced manufacturing technology.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yu-Tzu Wang ◽  
Jian-Hong Yu ◽  
Lun-Jou Lo ◽  
Pin-Hsin Hsu ◽  
CHun-Li Lin

This study integrates cone-beam computed tomography (CBCT)/laser scan image superposition, computer-aided design (CAD), and 3D printing (3DP) to develop a technology for producing customized dental (orthodontic) miniscrew surgical templates using polymer material. Maxillary bone solid models with the bone and teeth reconstructed using CBCT images and teeth and mucosa outer profile acquired using laser scanning were superimposed to allow miniscrew visual insertion planning and permit surgical template fabrication. The customized surgical template CAD model was fabricated offset based on the teeth/mucosa/bracket contour profiles in the superimposition model and exported to duplicate the plastic template using the 3DP technique and polymer material. An anterior retraction and intrusion clinical test for the maxillary canines/incisors showed that two miniscrews were placed safely and did not produce inflammation or other discomfort symptoms one week after surgery. The fitness between the mucosa and template indicated that the average gap sizes were found smaller than 0.5 mm and confirmed that the surgical template presented good holding power and well-fitting adaption. This study addressed integrating CBCT and laser scan image superposition; CAD and 3DP techniques can be applied to fabricate an accurate customized surgical template for dental orthodontic miniscrews.


2021 ◽  
Vol 13 (2) ◽  
pp. 39-44
Author(s):  
Hussein M.A. Hussein ◽  
◽  
Hossam Salem ◽  
Walla Abdelzaher ◽  
Vishal Naranje ◽  
...  

This paper proposed a novel methodology for designing and manufacturing of sheet metal dies based on features of sheet parts. Also, combination is designed according to die cupping and punching features of sheet metal parts. The proposed approach is an attempt to make seamless integration of computer aided design with computer aided manufacturing. The features used in this study are taken from MusumiTM Catalogue as well as from various small and medium scale sheet metal industries. Work is divided into two phases. In the first phase, the relevant geometrical and topological data is extracted by reading STEP AP 203. In the second phase, a combine adjacency matrix and rule-based system is developed to recognize sheet metal features for die manufacturing. The system showed excellent performance for all types of features contained in the MusumiTM catalog and for different sheet metal industries. The proposed system for automated design of combination dies for sheet metal parts has been tested successfully for various types of industrial deep drawn parts. It reduces the die compoment design time from hours to minutes. selection of die components and drawings generated by the system were found to be reasonable and very similar to those actually used in the sheet metal industries for production of these typical components on combination dies.


Sign in / Sign up

Export Citation Format

Share Document