Planar Force-constant Method for Lattice Dynamics of Cubic InN

2000 ◽  
Vol 639 ◽  
Author(s):  
H. W. Leite Alves ◽  
J. L. A. Alves ◽  
L. M. R. Scolfaro ◽  
J. R. Leite

ABSTRACTUsing the density-functional theory within the Full Potential Linear Augmented Plane-Wave (FP-LAPW) method, we have calculated, in this work, the equation of state, the effective charges and the phonon dispersion along [100] and [111] directions for the cubic Indium Nitride(c-InN), including hydrostatic strains dependence. A good agreement with the micro-Raman scattering experiment is obtained for the phonon modes at ã. Our results show that the apparent divergence between the known experimental results is a consequence of hydrostatic effects on the sample due to differences of the used Raman methods.

2013 ◽  
Vol 665 ◽  
pp. 302-306 ◽  
Author(s):  
Sheetal Sharma ◽  
Ajay Singh Verma

The structural, electronic, optical and elastic properties of zinc-blende compounds (CdX, X = S, Se and Te), were studied using full-potential augmented plane wave plus local orbitals method (FP-LAPW+ lo) within density functional theory, using generalized gradient approximation (GGA). Geometrical optimization of the unit cell (lattice constant, bulk modulus and its pressure derivative) is in good agreement with experimental data. Results for band structures, density of states, and elastic constants (C11, C12 and C44) are presented. We also report our results on optical properties like the complex dielectric functions and the refractive index (n) of these compounds. Our results are in reasonable agreement with the available theoretical and experimental data.


2017 ◽  
Vol 19 (46) ◽  
pp. 31255-31266 ◽  
Author(s):  
E. Narsimha Rao ◽  
G. Vaitheeswaran ◽  
Ali H. Reshak ◽  
S. Auluck

We explore the effect of spin–orbit interaction (SOI) on the electronic and optical properties of CsPbCO3F using the full potential linear augmented plane wave method with the density functional theory (DFT) approach.


2019 ◽  
Vol 297 ◽  
pp. 120-130 ◽  
Author(s):  
Abdelhakim Chadli ◽  
Mohamed Halit ◽  
Brahim Lagoun ◽  
Ferhat Mohamedi ◽  
Said Maabed ◽  
...  

The structural, elastic and anisotropic properties for rare earth manganites compound YMnO3 in ferromagnetic state with hexagonal structure, have been investigated using the ab initio calculations based on the density functional theory, this calculations were based on the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA). The agreement of the DFT (FP-LAPW) calculations including internal atomic relaxations, with the experimental data is very good. Other relevant quantities such as elastic constants, shear modulus, Young’s modulus, Poisson’s ratio, anisotropy factors, sound velocity, and Debye temperature have been calculated and discussed.


2014 ◽  
Vol 925 ◽  
pp. 390-395
Author(s):  
Noureddine Amrane ◽  
Maamar Benkraouda

We present a systematic and comparative study of the electronic properties of CeX monochalcogenides, The density of state (DOS) and electronic band structure of CeX (X=S, Se, Te) have been calculated using the full-potential linearized augmented plane-wave (FP-LAPW) + local orbital (lo) method based on the density functional theory (DFT), which is implemented in WIEN2k code. The trends in the high pressure behavior of these systems are discussed. Four approximations for the exchange-correlation functional have been used, the GGA's of Perdew-Burke-Ernzherhof. (PBE08) , Engel-Vosko (EV93), a modified version of the exchange potential proposed by Becke and Johnson (MBJ), and LDA+U is used to calculate the band gaps at different pressures. All methods allow for a description of the Ce f electrons as either localized or delocalized, it is found that the underestimations of the bandgap by means of LDA-GGA and Engel-Vosko are considerably improved by using the modified Becke-Johnson (MBJ) potential for all compounds in the series, On the other hand, LDA+U, method gives good results for the lighter chalcogenides, but it fails to give good results for the heavier cerium monochalcogenides.


2017 ◽  
Vol 31 (06) ◽  
pp. 1750033 ◽  
Author(s):  
A. A. Mubarak

This is an ab initio study instituted on the density functional theory (DFT) and the full-potential linearized augmented plane wave (FP-LAPW) calculations that are performed to analyze the mechanical, electronic, optical and thermoelectric properties of the cubic MCoF3 compound (M = K and Rb). The studied compounds are found thermodynamically and mechanically stable. Moreover, these compounds are found to be elastically anisotropic and ductile. KCoF3 and RbCoF3 are classified as half-metallic and anti-ferromagnetic compounds. The optical properties are investigated from the dielectric function for the different energy ranges. The thermoelectric properties such as transport properties are determined as a function of temperature using BoltzTrape code in the range of 20–800 K. The present compounds are found to have p-type character. Also, the majority charge carriers are found to be electrons rather than hole. Useful mechanical, spintronic, optical and thermoelectric applications are predicted based upon the calculations.


2013 ◽  
Vol 750-752 ◽  
pp. 941-945 ◽  
Author(s):  
Xue Fu Shang ◽  
Ya Wei Wang ◽  
Ming Qiu Tan

The magneto-optical Kerr effect (MOKE) for both Heusler type alloys (AuMnSb and AuMnSn) were studied using the full-potential linearized augmented plane-wave (FP-LAPW) method, based on the density functional theory implemented in the WIEN2k code. The differences with previous calculations on the Kerr spectra have been found explicitly. At proper Lorentzian such asδ= 0.4 eV, the calculated Kerr angle of AuMnSn reaches its maxima +0.3° near 0.6 eV and-0.5° at 5.2 eV, respectively while the MOKE spectra of AuMnSb exhibit less prominent Peaks (+0.5° at 0.3 eV, -1.9° at 0.9 eV, -1.0° at 2.4 eV and-2.0° at 5.3 eV). The results on the spectra in this work showed quite a lot differences with all previous all-electron calculations. It is concluded that the contribution from Sb (or Sn) site to the magneto-optical kerr effect is quite crucial in Heuslar alloys.


2021 ◽  
Vol 3 ◽  
pp. e15
Author(s):  
Amall Ahmed Ramanathan ◽  
Jamil Mahmoud Khalifeh

The density functional theory (DFT) full potential linearized augmented plane wave (FP-LAPW) method with the modified Becke–Johnson (mBJ) approximation is used to perform spin polarised calculations of the transition metal perovskites MoScO3 and WScO3. Both depict half metallic behaviour with semiconducting and metallic in the minority and majority spins respectively. MoScO3 and WScO3 have indirect R− Γ band gaps in the minority spin channels of 3.61 and 3.82 eV respectively. Moreover, they both show substantial integer magnetic moments of 3μB with 100% spin polarization typical to half metals. In addition, we calculate the dielectric function, optical conductivity and the optical constants, namely, the refractive index, the reflectivity, the extinction and absorption coefficients.


2018 ◽  
Vol 2 (1) ◽  

Structural, elastic and thermal properties of lanthanide monoantimonides LnSb (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) compounds have been studied theoretically using full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) method within the density functional theory. The structural properties are investigated by using GGA-PBEsol scheme. We calculated bulk modulus, shear modulus, Young’s modulus, anisotropic ratio, Kleinman parameters, Poisson’s ratio, Lame’s co-efficient, sound velocities for shear and longitudinal waves, and Debye temperature. We also predict the Cauchy pressure and B/G ratio in order to explore the ductile and brittle behaviors of these compounds.Our results are in good agreement with available experimental and other theoretical data and also provide predictions where no experimental or theoretical results are available.


2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Amall A. Ramanathan

The electronic and optical properties of the newly synthesized molybdenum dinitride (MoN2) in the hypothetical 2H structure analogous to MoS2 is investigated using the density functional theory (DFT) full potential linearized augmented plane wave (FP-LAPW) method and the modified Becke–Johnson (mBJ) approximation. The aim is to investigate the optoelectronic properties of this compound for potential optical sensing applications and compare with the capabilities of MoS2 in this field. As compared to MoS2, which is a semiconductor, MoN2 is found to be a semi metal from the band structure plots. The dielectric function, optical conductivity and the optical constants, namely, the refractive index, the reflectivity, the extinction and absorption coefficients, are evaluated and compared with those of MoS2 and discussed with reference to the sensing performance.


2017 ◽  
Vol 24 (1&2) ◽  
pp. 1-6
Author(s):  
Joo Yull Rhee ◽  
Y.V. Kudryavtsev ◽  
K.W. Kim ◽  
Y.P. Lee

Co2MnGa alloy was prepared by the conventional arc-melting method. The optical conductivity (OC) spectrum of the alloy was measured by a rotating-analyzer spectroscopic ellipsometer. The OC spectrum was also calculated based on the electronic structure by using the full-potential linearized-augmented-plane-wave method within the local-spin-density approximation to the density-functional theory. The calculated OC spectrum does not agree well with the experimental one. Since the Co2MnGa alloy could be a strongly-correlated material, the so-called 'LDA+U' method was applied with U = 5.4 eV. The calculated OC spectrum using the 'LDA+U' method agrees very well with the experimental one. The inclusion of the onsite Coulombpotential during the self-consistent calculation significantly modifies the minorityspin Co and Mn 3d bands, resulting in a contraction of the energy gaps between states which are strongly involved in interband absorption peaks.


Sign in / Sign up

Export Citation Format

Share Document