The Effect of Silicide Volume Fraction on the Creep Behavior of Nb-Silicide Based In-Situ Composites

2000 ◽  
Vol 646 ◽  
Author(s):  
B.P. Bewlay ◽  
C.L. Briant ◽  
A.W. Davis ◽  
M.R. Jackson

ABSTRACTThis paper will describe the creep behavior of high-temperature Nb-silicide in-situ composites based on quaternary Nb-Hf-Ti-Si alloys. The effect of volume fraction of silicide on creep behavior, and the effects of Hf and Ti additions, will be described. The composites were tested in compression at temperatures up to 1200°C and stress levels in the range 70 to 280 MPa. At high (Nb) phase volume fractions the creep behavior is controlled by deformation of the (Nb) and, as the volume fraction of silicide is increased, the creep rate is reduced. However, at large silicide volume fractions (>0.7) damage in the silicide begins to degrade the creep performance. The creep rate has a minimum at a volume fraction of ∼0.6 silicide. The creep performance of the monolithic and silicide phases will also be discussed.

1998 ◽  
Vol 552 ◽  
Author(s):  
B. P. Bewlay ◽  
P. W. Whiting ◽  
A. W. Davis ◽  
C. L. Briant

ABSTRACTThis paper will discuss the relationship between microstructure and creep behavior in hightemperature niobium-silicide based in-situ composites. The creep behavior of composites generated from binary Nb-Si alloys, and higher order alloys containing Mo, Hf and Ti additions, will be described. In-situ composites were tested in compression at temperatures up to 1200°C and stress levels in the range 70 to 280MPa. It was found that the Hf concentration can be increased to 7.5 with little increase in creep rate, over that for the binary Nb3Si-Nb composite, but at higher concentrations the creep rate is increased at stress levels higher than 21OMPa. At stresses less than 21OMPa the Ti concentration can be increased to 21 without a detrimental effect on creep performance, but at higher concentrations there is a substantial increase in the creep rate.


JOM ◽  
1999 ◽  
Vol 51 (4) ◽  
pp. 32-36 ◽  
Author(s):  
B. P. Bewlay ◽  
M. R. Jackson ◽  
P. R. Subramanian

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andreas Förner ◽  
S. Giese ◽  
C. Arnold ◽  
P. Felfer ◽  
C. Körner ◽  
...  

Abstract Eutectic NiAl-(Cr,Mo) composites are promising high temperature materials due to their high melting point, excellent oxidation behavior and low density. To enhance the strength, hardness and fracture toughness, high cooling rates are beneficial to obtain a fine cellular-lamellar microstructure. This can be provided by the additive process of selective electron beam melting. The very high temperature gradient achieved in this process leads to the formation of the finest microstructure that has ever been reported for NiAl-(Cr,Mo) in-situ composites. A very high hardness and fracture toughening mechanisms were observed. This represents a feasibility study towards additive manufacturing of eutectic NiAl-(Cr,Mo) in-situ composites by selective electron beam melting.


2016 ◽  
Vol 49 (4) ◽  
pp. 1253-1265 ◽  
Author(s):  
Ralph Gilles ◽  
Debashis Mukherji ◽  
Lukas Karge ◽  
Pavel Strunz ◽  
Premysl Beran ◽  
...  

Co–Re alloys are being developed for ultra-high-temperature applications to supplement Ni-based superalloys in future gas turbines. The main goal of the alloy development is to increase the maximum service temperature of the alloy beyond 1473 K,i.e.at least 100 K more than the present single-crystal Ni-based superalloy turbine blades. Co–Re alloys are strengthened by carbide phases, particularly the monocarbide of Ta. The binary TaC phase is stable at very high temperatures, much greater than the melting temperature of superalloys and Co–Re alloys. However, its stability within the Co–Re–Cr system has never been studied systematically. In this study an alloy with the composition Co–17Re–23Cr–1.2Ta–2.6C was investigated using complementary methods of small-angle neutron scattering (SANS), scanning electron microscopy, X-ray diffraction and neutron diffraction. Samples heat treated externally and samples heatedin situduring diffraction experiments exhibited stable TaC precipitates at temperatures up to 1573 K. The size and volume fraction of fine TaC precipitates (up to 100 nm) were characterized at high temperatures within situSANS measurements. Moreover, SANS was used to monitor precipitate formation during cooling from high temperatures. When the alloy is heated the matrix undergoes an allotropic phase transformation from the ∊ phase (hexagonal close-packed) to the γ phase (face-centred cubic), and the influence on the strengthening TaC precipitates was also studied within situSANS. The results show that the TaC phase is stable and at these high temperatures the precipitates coarsen but still remain. This makes the TaC precipitates attractive and the Co–Re alloys a promising candidate for high-temperature application.


Sign in / Sign up

Export Citation Format

Share Document