The Role of Ion Mass on End-of-Range Damage in Shallow Preamorphizing Silicon

2001 ◽  
Vol 669 ◽  
Author(s):  
Mark H. Clark ◽  
Kevin S. Jones ◽  
Tony E. Haynes ◽  
Charles J. Barbour ◽  
Kenneth G. Minor ◽  
...  

ABSTRACTPreamorphization is commonly used to form shallow junction in silicon CMOS devices. The purposeof this experiment was to study the effect of the preamorphizing species' mass on the interstitial concentration at the end-of-range (EOR). Isovalent species of Si, Ge, Sn and Pb were compared. Silicon wafers with a buried boron marker layer (4700 Å deep) were amorphized using implants of 22 keV 28Si+, 32 keV73Ge+, 40 keV 119Sn+ or 45 keV 207Pb+, which resulted in similar amorphous layer depths. All species were implanted at a dose of 5×1014 /cm2. Cross-sectional transmission electron microscopy (XTEM) was used tomeasure amorphous layer depths (approximately 400 Å). Post-implantation anneals were performed at 750 °C for 15 minutes. Plan-view transmission electron microscopy (PTEM) was used to observe and quantify the EOR defect population upon annealing. Secondary ion mass spectrometry (SIMS) was used to monitor the transient enhanced diffusion (TED) of the buried boron marker layer resulting from the EOR damage introduced by the amorphizing implants. Based upon the SIMS results Florida Object Oriented Process Simulator (FLOOPS) calculated the resulting time average diffusivity enhancements. Results showed that increasing the ion mass over a significant range (28 to 207 AMU) not only affects the quantity and type of damage that occurs at the EOR, but results in a reduced diffusivity enhancement.

1993 ◽  
Vol 311 ◽  
Author(s):  
Lin Zhang ◽  
Douglas G. Ivey

ABSTRACTSilicide formation through deposition of Ni onto hot Si substrates has been investigated. Ni was deposited onto <100> oriented Si wafers, which were heated up to 300°C, by e-beam evaporation under a vacuum of <2x10-6 Torr. The deposition rates were varied from 0.1 nm/s to 6 nm/s. The samples were then examined by both cross sectional and plan view transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy and electron diffraction. The experimental results are discussed in terms of a new kinetic model.


2012 ◽  
Vol 18 (6) ◽  
pp. 1410-1418 ◽  
Author(s):  
Daniel K. Schreiber ◽  
Praneet Adusumilli ◽  
Eric R. Hemesath ◽  
David N. Seidman ◽  
Amanda K. Petford-Long ◽  
...  

AbstractA sample preparation method is described for enabling direct correlation of site-specific plan-view and cross-sectional transmission electron microscopy (TEM) analysis of individual nanostructures by employing a dual-beam focused-ion beam (FIB) microscope. This technique is demonstrated using Si nanowires dispersed on a TEM sample support (lacey carbon or Si-nitride). Individual nanowires are first imaged in the plan-view orientation to identify a region of interest; in this case, impurity atoms distributed at crystalline defects that require further investigation in the cross-sectional orientation. Subsequently, the region of interest is capped with a series of ex situ and in situ deposited layers to protect the nanowire and facilitate site-specific lift-out and cross-sectioning using a dual-beam FIB microscope. The lift-out specimen is thinned to electron transparency with site-specific positioning to within ∼200 nm of a target position along the length of the nanowire. Using the described technique, it is possible to produce correlated plan-view and cross-sectional view lattice-resolved TEM images that enable a quasi-3D analysis of crystalline defect structures in a specific nanowire. While the current study is focused on nanowires, the procedure described herein is general for any electron-transparent sample and is broadly applicable for many nanostructures, such as nanowires, nanoparticles, patterned thin films, and devices.


2005 ◽  
Vol 20 (7) ◽  
pp. 1878-1887 ◽  
Author(s):  
Takanori Kiguchi ◽  
Naoki Wakiya ◽  
Kazuo Shinozaki ◽  
Nobuyasu Mizutani

The crystallization process of yttria-stabilized zirconia (YSZ) gate dielectrics deposited on p-Si (001) and SiOx/p-Si(001) substrates and the growth process of SiOx has been investigated directly using high-temperature in situ cross-sectional view transmission electron microscopy (TEM) method and high-temperature plan-view in-situ TEM method. The YSZ layer is crystallized by the nucleation and growth mechanism at temperatures greater than 573 K. Nucleation originates from the film surface. Nucleation occurs randomly in the YSZ layer. Subsequently, the crystallized YSZ area strains the Si surface. Finally, it grows in the in-plane direction with the strain, whereas, if a SiOx layer of 1.4 nm exists, it absorbs the crystallization strain. Thereby, an ultrathin SiOx layer can relax the strain generated in the Si substrate in thin film crystallization process.


Author(s):  
V.P. Dravid ◽  
M.R. Notis ◽  
C.E. Lyman ◽  
A. Revcolevschi

Transmission electron microscopy (TEM), incorporating imaging, diffraction and spectrometry has contributed significantly to the understanding of the structure of crystalline interfaces. Traditionally, planar interfaces are investigated using cross-sectional views (electron beam parallel to the interface) of the specimen. However, plan-view TEM (PVTEM) has recently emerged as a viable and supplementary technique to cross-sectional TEM (XTEM). PVTEM enjoys certain definite advantages over XTEM. One important consideration is that the interface in a PV specimen is buried (sandwiched between two crystals) and is expected to be free of artefacts induced by specimen preparation procedures. Moreover, many multilayer electronic materials are amenable to PVTEM because they can be easily backthinned to electron transparency with virtually no damage to the internal interfaces. PV specimens clearly contain much larger interface area than XTEM specimens, which may be of great significance when statistics are considered. Apart from these considerations PVTEM studies can also offer specific information about the interface not always possible in XTEM. In this brief communication we report some of our results on imaging, diffraction and spectrometry of interfaces obtained by viewing the interfaces in the PV mode.


1987 ◽  
Vol 103 ◽  
Author(s):  
F. K. LeGoues ◽  
S. S. Iyer ◽  
K. N. Tu ◽  
S. L. Delage

ABSTRACTSixGe1−x strained layer superlattices are known to be metastable in that they can be grown fully commensurate with layer thickness higher than the equilibrium, calculated Tc at which dislocation formation becomes energetically favorable. In this paper, we describe the mechanism of relaxation in such multilayers. Both plane-view and cross-sectional transmission electron microscopy (TEM) were used to examine the formation of dislocation at the different interfaces. RBS was used to follow interdiffusion. We found two competing mechanisms for relaxation: The preferred mode for relaxation is the creation of dislocation networks at each of the interfaces. This process can be stopped or considerably inhibited by the difficulty of forming new dislocations in samples which are perfectly commensurate after growth; Some dislocations appear necessary in order to generate more dislocations during annealing. When this is not the case, the only possible way to attain relaxation is through diffusion. In such a case, stress-enhanced diffusion is observed, with a diffusion coefficient 200 times higher than expected.


1989 ◽  
Vol 147 ◽  
Author(s):  
E. A. Dobisz ◽  
H. Dietrich ◽  
A. W. McCormick ◽  
J. P. Harbison

AbstractPreviously, it was shown that superlattices implanted with Si at 77K, exhibited more extensive damage and uniform compositional mixing upon subsequent annealing than samples implanted at room temperature.[l,2] The current work focuses on the damage in samples implanted with Si at 77K. The study shows that for a given dose, the amount of damage depends upon the layer thickness and the composition. Specimens of bulk GaAs, Al 3Ga. 7As, 7.5 nm GaAs -10 nm Al. 3Ga. 7As superlattice (SL1), 5.5 nm GaAs −3.5 nm AlAs superlattice (SL2), and 8.0 nm GaAs −8.0 nm AlAs superlat-tice (SL3) were implanted at 77K with 100 KeV Si, with doses ranging from 3 × 1013 cm−2 to 1 × 1015 cm−2. The samples were examined by ion channelling and cross sectional transmission electron microscopy (TEM). At 77K and a dose of 1 × 1014 cm−2, the GaAs and SLi showed an amorphous layer, while no damage peak was observed in SL2. The 77K amorphization thresholds of the Al 3Ga. 7As alloy, SL2, and SL3 were 2.5 × 1014 cm−2, 4 × 1014 cm−2, and 1 × 1015 cm−2 respectively. The sharpness of the amorphization threshold varied with the material.


1996 ◽  
Vol 11 (11) ◽  
pp. 2738-2743 ◽  
Author(s):  
X. Sun ◽  
S. Schneider ◽  
U. Geyer ◽  
W. L. Johnson ◽  
M-A. Nicolet

The amorphous ternary metallic alloy Zr60Al15Ni25 was oxidized in dry oxygen in the temperature range 310 °C to 410 °C. Rutherford backscattering (RBS) and cross-sectional transmission electron microscopy (TEM) studies suggest that during this treatment an amorphous layer of zirconium-aluminum-oxide is formed at the surface. Nickel was depleted in the oxide and enriched in the amorphous alloy near the interface. The oxide layer thickness grows parabolically with annealing duration, with a transport constant of 2.8 × 10−5 m2/s × exp(−1.7 eV/kT). The oxidation rate may be controlled by the diffusion of Ni in the amorphous alloy. At later stages of the oxidation process, precipitates of nanocrystalline ZrO2 appear in the oxide near the interface. Finally, two intermetallic phases nucleate and grow simultaneously in the alloy, one at the interface and one within the alloy. An explanation involving preferential oxidation is proposed.


1997 ◽  
Vol 469 ◽  
Author(s):  
G. Z. Pan ◽  
K. N. Tu

ABSTRACTPlan-view and cross-sectional transmission electron microscopy have been used to study the microstructural characterization of the nucleation and growth behavior of {113} rodlike defects, as well as their correlation with {111} dislocation loops in silicon amorphized with 50 keV, 36×1014 Si/cm2, 8.0 mAand annealed by rapid thermal anneals at temperatures from 500 °C to 1100 °C for various times. We found that the nucleations of the {113} rodlike defects and {111} dislocation loops are two separate processes. At the beginning of anneals, excess interstitials accumulate and form circular interstitial clusters at the preamorphous/crystalline interface at as low as 600 °C for 1 s. Then these interstitial clusters grow along the <110> direction to form {113} rodlike defects. Later, while the {113} defects have begun to grow and/or dissolve into matrix, the {111} faulted Frank dislocation loops start to form. We also found that the initial interstitial clusters prefer to grow along the <110>directions inclined to the implantation surface.


1991 ◽  
Vol 230 ◽  
Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

AbstractThe evolution of nanometer Ru films sandwiched between various C layer thicknesses with thermal treatments was studied by plan-view and cross-sectional Transmission Electron Microscopy. Plan-view observation provides information on the Ru grain size, while crosssectional studies allow examination of the multilayer morphology. After annealing at 800°C for 30 minutes, the grain size in the 2 and 4 nm Ru layers show little difference from each other, while that in the I nm Ru layers depends strongly on the thickness of the C layers in the multilayers. It increases with decreasing C layer thickness. Agglomeration of the Ru layers is observed in Inmn Ru / 1nm C multilayers after annealing at 600°C for 30 minutes. The evolution of the microstructures and layered structure stability of the Ru/C system is compared to that of W/C and Ru/B4C systems.


Sign in / Sign up

Export Citation Format

Share Document