Combination of Continuum and Atomistic Approaches for the Study of Dislocation Nucleation from Atomic Size Surface Defects

2001 ◽  
Vol 677 ◽  
Author(s):  
Sandrine Brochard ◽  
Pierre Beauchamp ◽  
Jean Grilhé

ABSTRACTAtomistic simulations realized on an f.c.c. crystal containing atomic size surface defects (step and groove) show that the defects are privileged sites for dislocation nucleation. Before nucleation, an elastic shear, precursor of the dislocation, appears in the plane in zone with the step where the dislocation will be nucleated. In order to explain the strong localization of the localized elastic precursor shear, we have analyzed the stress concentration near the surface defects using the continuum point force approach. For the step case, the origin of the localized shear is related to an increase in the interplanar separation due to the stress concentration.

2011 ◽  
Vol 2 (0) ◽  
pp. 20-23 ◽  
Author(s):  
Tomohito TSURU ◽  
Yoshiyuki KAJI ◽  
Takashi TSUKADA ◽  
Yoji SHIBUTANI

2008 ◽  
Vol 33-37 ◽  
pp. 919-924
Author(s):  
Chung Ming Tan ◽  
Yeau Ren Jeng ◽  
Yung Chuan Chiou

This paper employs static atomistic simulations to investigate the effect of a void on the nanoindentation of Cu(111). The simulations minimize the potential energy of the complete system via finite element formulation to identify the equilibrium configuration of any deformed state. The size and depth of the void are treated as two variable parameters. The numerical results reveal that the void disappears when the indentation depth is sufficiently large. A stress concentration is observed at the internal surface of the void in all simulations cases. The results indicate that the presence of a void has a significant influence on the nanohardness extracted from the nanoindentation tests.


Author(s):  
Jie Lian ◽  
Junlan Wang

In this study, intrinsic size effect — strong size dependence of mechanical properties — in materials deformation was investigated by performing atomistic simulation of compression on Au (114) pyramids. Sample boundary effect — inaccurate measurement of mechanical properties when sample size is comparable to the indent size — in nanoindentation was also investigated by performing experiments and atomistic simulations of nanoindentation into nano- and micro-scale Au pillars and bulk Au (001) surfaces. For intrinsic size effect, dislocation nucleation and motions that contribute to size effect were analyzed for studying the materials deformation mechanisms. For sample boundary effect, in both experiments and atomistic simulation, the elastic modulus decreases with increasing indent size over sample size ratio. Significantly different dislocation motions contribute to the lower value of the elastic modulus measured in the pillar indentation. The presence of the free surface would allow the dislocations to annihilate, causing a higher elastic recovery during the unloading of pillar indentation.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (3) ◽  
pp. 184-189 ◽  
Author(s):  
P.M. Derlet ◽  
P. Gumbsch ◽  
R. Hoagland ◽  
J. Li ◽  
D.L. McDowell ◽  
...  

AbstractInternal microstructural length scales play a fundamental role in the strength and ductility of a material. Grain boundaries in nanocrystalline structures and heterointerfaces in nanolaminates can restrict dislocation propagation and also act as a source for new dislocations, thereby affecting the detailed dynamics of dislocation-mediated plasticity. Atomistic simulation has played an important and complementary role to experiment in elucidating the nature of the dislocation/interface interaction, demonstrating a diversity of atomic-scale processes covering dislocation nucleation, propagation, absorption, and transmission at interfaces. This article reviews some atomistic simulation work that has made progress in this field and discusses possible strategies in overcoming the inherent time scale challenge of finite temperature molecular dynamics.


Author(s):  
Jessica Gray ◽  
Soheil Fatehiboroujeni ◽  
Sachin Goyal

The structure-function relationship of biological filaments is greatly impacted by their mesoscale mechanics that involves twisting and bending deformations. For example, the mechanics of DNA looping is a key driver in gene regulation. The continuum-rod models have emerged as efficient tools for simulating the nonlinear dynamics of such deformations. However, there is no direct way to derive or measure the constitutive law of biological filaments for their continuum modeling. Therefore, it is an active area of research to develop inverse algorithms based on a continuum rod model that can estimate the constitutive law from the atomistic configurations of the filament. This paper presents a set of such algorithms that can use data from the dynamic states of deformation obtained from atomistic simulations or other sources. Depending on the kinematic quantities that are computed from the configuration data, the inverse algorithms differ in their steps to estimate the internal restoring moments and forces. The paper investigates and compares the robustness of these inverse algorithms accounting for the effect of noise in the data.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3969
Author(s):  
Peikang Bai ◽  
Pengcheng Huo ◽  
Taotao Kang ◽  
Zhanyong Zhao ◽  
Wenbo Du ◽  
...  

AlSi10Mg alloy branches were fabricated by selective laser melting (SLM), and the branches were employed to evaluate their effect on the mechanical properties. When the porous branches were compressed along its building direction, the tree column structures-type AlSi10Mg alloy branches collapsed twice, which had typical elastic, shear, collapse, and densification stages. The compressive stress concentration at the interface between the support and the porous body caused the fracture of the tree column structures-type AlSi10Mg alloy branches. The fracture surface indicated that the prepared tree-type branches were distributed with different shapes of dimples, and the Si content inside the dimples was higher than that of the edge. The morphology of the Al-Si eutectic structure formed by SLM and the stress concentration at the Al/Al-Si-eutectic interface affected the fracture morphology and Si content distribution.


Sign in / Sign up

Export Citation Format

Share Document