Low Pressure Chemical Vapor Deposition of Tungsten and Aluminum for VLSI Applications

1986 ◽  
Vol 71 ◽  
Author(s):  
R. A. Levy ◽  
M. L. Green

AbstractThis paper reviews the current status of LPCVD tungsten and aluminum for VLSI applications. Using deposition chemistries based on tungsten hexafluoride and tri-isobutyl aluminum, W and Al deposits are characterized with respect to their electrical, mechanical, structural, chemical and optical properties. Although results of this study prove these two LPCVD processes to be compatible with current VLSI fabrication, certain problems must still be resolved for complete commercial acceptance. These problems include, in the case of selective LPCVD tungsten, the occurrence of leakage current across N+/P-Tub junctions, and in the case of LPCVD aluminum, the relatively poor electromigration resistance (compared to Al-Cu) and excess surface roughness.

2006 ◽  
Vol 100 (1) ◽  
pp. 013524 ◽  
Author(s):  
Zhenrui Yu ◽  
Mariano Aceves-Mijares ◽  
Enrique Quiroga ◽  
R. Lopez-Estopier ◽  
Jesus Carrillo ◽  
...  

1998 ◽  
Vol 541 ◽  
Author(s):  
Tsuyoshi Horikawa ◽  
Masayoshi Tarutani ◽  
Takaaki Kawahara ◽  
Mikio Yamamuka ◽  
Noriko Hirano ◽  
...  

AbstractThe current status of (Ba,Sr)TiO3 [BST] capacitor technology using a liquid source chemical vapor deposition (CVD) method is reviewed, focusing on the CVD techniques and the physical, electrical and process-integration-related properties of Ru/BST/Ru capacitors. The use of a new titanium metalorganic (MO) source, titanium bis(tert-butoxy) bis(dipivaloylmethanato) [Ti(tertBuO)2 (DPM)2] dissolved in tetrahydrofuran (THF) turned out to enable highly conformal deposition of BST films with a coverage ratio of ∼ 70 % for a trench with an aspect ratio of ∼ 5. Electrical properties of a 24-nm-thick BST film, deposited on a Pt substrate at a low substrate temperature of 480 °C, were also confirmed to be equivalent SiO2 thickness (teq) of ∼ 0.5 nm and leakage current of ∼ 1 ×10-7 A/cm2 at 1 V. As for the Ru/BST/Ru capacitors, no deteriorations of Ru electrode and BST/Ru interface were observed after 750 °C post-annealing experiment, showing good thermal stability of Ru as a practical electrode material. Although current leak through Ru/BST/Ru capacitors slightly increased after the H2 annealing, such degradation in the leakage properties was restored by post-annealing in N2 ambience. Integrated Ru/BST/Ru capacitors with a 30-nm-thick CVD-BST film were fabricated by 0.5 μm ULSI technology, and low leakage current was confirmed for the stacked capacitors. Regarding the reproducibility of BST deposition by the liquid source CVD method, the deviation ratio of ∼ ± 2.3 % in film thickness was obtained for ∼ 100 successive depositions, thickness uniformity across the wafers was ∼ ± 1.1 %. The above results imply the potential applicability of BST capacitor technology using a liquid source CVD method for Gbit-scale DRAMs.


Sign in / Sign up

Export Citation Format

Share Document