STM Nanospectroscopic Study of Defects in Semiconductors

2002 ◽  
Vol 719 ◽  
Author(s):  
Koji Maeda ◽  
Akira Hida ◽  
Yutaka Mera

AbstractCoupling of scanning tunneling microscopy (STM) with various schemes of optical spectroscopy was found to provide powerful tools for study of crystalline defects in bulk semiconducting solids. The simplest method was applied to a subsurface defect in a bulk GaAs crystal in which the signal was acquired by detecting the change in the tunneling current reflecting a local surface swelling that occurs when the wavelength of the chopped light used for spectroscopic measurements coincides with a photoabsorption spectral peak of the defect. Another scheme using a continuous light of variable wavelength was applied to midgap centers, assigned as arsenic antisite defects, densely populated in low-temperature-grown GaAs epifilms. Experiments at 90K revealed that light illumination causes reversible transformation of the individual defects to a metastable state with an excitation spectrum very close to one observed for the photo-quenching effect of EL2 centers in bulk GaAs.

Author(s):  
W. Lo ◽  
J.C.H. Spence ◽  
M. Kuwabara

Work on the integration of STM with REM has demonstrated the usefulness of this combination. The STM has been designed to replace the side entry holder of a commercial Philips 400T TEM. It allows simultaneous REM imaging of the tip/sample region of the STM (see fig. 1). The REM technique offers nigh sensitivity to strain (<10−4) through diffraction contrast and high resolution (<lnm) along the unforeshortened direction. It is an ideal technique to use for studying tip/surface interactions in STM.The elastic strain associated with tunnelling was first imaged on cleaved, highly doped (S doped, 5 × 1018cm-3) InP(110). The tip and surface damage observed provided strong evidence that the strain was caused by tip/surface contact, most likely through an insulating adsorbate layer. This is consistent with the picture that tunnelling in air, liquid or ordinary vacuum (such as in a TEM) occurs through a layer of contamination. The tip, under servo control, must compress the insulating contamination layer in order to get close enough to the sample to tunnel. The contaminant thereby transmits the stress to the sample. Elastic strain while tunnelling from graphite has been detected by others, but never directly imaged before. Recent results using the STM/REM combination has yielded the first direct evidence of strain while tunnelling from graphite. Figure 2 shows a graphite surface elastically strained by the STM tip while tunnelling (It=3nA, Vtip=−20mV). Video images of other graphite surfaces show a reversible strain feature following the tip as it is scanned. The elastic strain field is sometimes seen to extend hundreds of nanometers from the tip. Also commonly observed while tunnelling from graphite is an increase in the RHEED intensity of the scanned region (see fig.3). Debris is seen on the tip and along the left edges of the brightened scan region of figure 4, suggesting that tip abrasion of the surface has occurred. High resolution TEM images of other tips show what appear to be attached graphite flakes. The removal of contamination, possibly along with the top few layers of graphite, seems a likely explanation for the observed increase in RHEED reflectivity. These results are not inconsistent with the “sliding planes” model of tunnelling on graphite“. Here, it was proposed that the force due to the tunnelling probe acts over a large area, causing shear of the graphite planes when the tip is scanned. The tunneling current is then modulated as the planes of graphite slide in and out of registry. The possiblity of true vacuum tunnelling from the cleaned graphite surface has not been ruled out. STM work function measurements are needed to test this.


2011 ◽  
Vol 2 ◽  
pp. 802-808 ◽  
Author(s):  
Elena Mena-Osteritz ◽  
Marta Urdanpilleta ◽  
Erwaa El-Hosseiny ◽  
Berndt Koslowski ◽  
Paul Ziemann ◽  
...  

The self-assembly properties of a series of functionalized regioregular oligo(3-alkylthiophenes) were investigated by using scanning tunneling microscopy (STM) at the liquid–solid interface under ambient conditions. The characteristics of the 2-D crystals formed on the (0001) plane of highly ordered pyrolitic graphite (HOPG) strongly depend on the length of the π-conjugated oligomer backbone, on the functional groups attached to it, and on the alkyl substitution pattern on the individual thiophene units. Theoretical calculations were performed to analyze the geometry and electronic density of the molecular orbitals as well as to analyze the intermolecular interactions, in order to obtain models of the 2-D molecular ordering on the substrate.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1305
Author(s):  
Yuzhi Shang ◽  
Zilong Wang ◽  
Daxiao Yang ◽  
Yaru Wang ◽  
Chaoke Ma ◽  
...  

The structure of C60 thin films grown on Cd (0001) surface has been investigated from submonolayer to second monolayer regimes with a low-temperature scanning tunneling microscopy (STM). There are different C60 domains with various misorientation angles relative to the lattice directions of Cd (0001). In the (2√3 × 2√3) R30° domain, orientational disorder of the individual C60 molecules with either pentagon, hexagon, or 6:6 bond facing up has been observed. However, orientation ordering appeared in the R26° domain such that all the C60 molecules adopt the same orientation with the 6:6 bond facing up. In particular, complex chiral motifs composed of seven C60 molecules with clockwise or anticlockwise handedness have been observed in the R4° and R8° domains, respectively. Scanning tunneling spectroscopy (STS) measurements reveal a reduced HOMO–LOMO gap of 2.1 eV for the C60 molecules adsorbed on Cd (0001) due to the substrate screening and charge transfer from Cd to C60 molecules.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 827
Author(s):  
Marie Hervé ◽  
Moritz Peter ◽  
Timofey Balashov ◽  
Wulf Wulfhekel

We used a homodyne detection to investigate the gyration of magnetic vortex cores in Fe islands on W(110) with spin-polarized scanning tunneling microscopy at liquid helium temperatures. The technique aims at local detection of the spin precession as a function of frequency using a radio-frequency (rf) modulation of the tunneling bias voltage. The gyration was excited by the resulting spin-polarized rf current in the tunneling junction. A theoretical analysis of different contributions to the frequency-dependent signals expected in this technique is given. These include, besides the ferromagnetic resonance signal, also signals caused by the non-linearity of the I ( U ) characteristics. The vortex gyration was modeled with micromagnetic finite element methods using realistic parameters for the tunneling current, its spin polarization, and the island shape, and simulations were compared with the experimental results. The observed signals are presented and critically analyzed.


2018 ◽  
Vol 9 ◽  
pp. 3048-3052
Author(s):  
Neda Noei ◽  
Alexander Weismann ◽  
Richard Berndt

Spatially resolved measurements of the apparent tunneling barrier height Φapp in scanning tunneling microscopy have been used to estimate variations of the local work function Φ of surface structures. We experimentally show that Φapp can fail as a measure of Φ. The discrepancies are attributed to a kinetic-energy contribution to Φapp. This contribution depends on the lateral extent of the tunneling current filament and, consequently, on the local surface structure.


2006 ◽  
Vol 6 (11) ◽  
pp. 3460-3463 ◽  
Author(s):  
Yuhsuke Yasutake ◽  
Zujin Shi ◽  
Toshiya Okazaki ◽  
Hisanori Shinohara ◽  
Yutaka Majima

The interaction control between endohedral metallofullerenes and a metal substrate has been demonstrated by introducing hexanethiol, octanethiol, and decanethiol self-assembled monolayers (SAMs) as the interlayer. We observe the electric properties of terbium endohedral metallofullerenes (Tb@C82) on alkanethiol SAMs with different chain lengths by scanning tunneling microscopy (STM) and spectroscopy (STS). Based on the comparison of the high-resolution STM images of a Tb@C82 molecule on hexanethiol and octanethiol SAMs, the interaction between Tb@C82 and a hexanethiol SAM is found to be larger than that between Tb@C82 and an octanethiol SAM; this is because at 68 K, the rotational states of Tb@C82 terminate only on the hexanethiol SAM. Furthermore, we find that the tunneling current-voltage characteristics of Tb@C82 on the hexanethiol SAM show the rectifying effects that are also caused by the molecular energy level shifts of Tb@C82 molecules due to the large interaction.


1997 ◽  
Vol 82 (8) ◽  
pp. 4115-4117 ◽  
Author(s):  
I. Lyubinetsky ◽  
Z. Dohnálek ◽  
V. A. Ukraintsev ◽  
J. T. Yates

2021 ◽  
Author(s):  
Jian Gou ◽  
Bingyu Xia ◽  
Xuguang Wang ◽  
Peng Cheng ◽  
Andrew Thye Shen Wee ◽  
...  

Abstract Creating and manipulating multiple charge states of solitary defects in semiconductors is of essential importance for solitary defect electronics, but is fundamentally limited by Coulomb's law. Achieving this objective is challenging, due to the conflicting requirements of the localization necessary for the sizable band gap and delocalization necessary for a low charging energy. Here, using scanning tunneling microscopy/spectroscopy experiments and first-principles calculations, we realized exotic quinary charge states of solitary defects in two-dimensional intermetallic semiconductor Sn2Bi. We also observed an ultralow defect charging energy that increases sublinearly with charge number rather than displaying the usual quadratic behavior. Our work suggests a promising route for constructing multiple defect-charge states by designing intermetallic semiconductors, and opens new opportunities for developing quantum devices with charge-based quantum states.


Sign in / Sign up

Export Citation Format

Share Document