Power Generation from Piezoelectric Lead Zirconate Titanate Fiber Composites

2002 ◽  
Vol 736 ◽  
Author(s):  
Farhad Mohammadi ◽  
Ajmal Khan ◽  
Richard B. Cass

ABSTRACTPower generation from lead zirconate titanate (PZT) piezoelectric fibers in the form of 1–3 composites under application of an external force was investigated. Green fibers consisting of PZT powder dispersed in a cellulose binder were made by the Viscous Suspension Spinning Process (VSSP). The composites were made by firing sheets of parallel green PZT fibers at 1270 °C, and then laminating the sintered sheets in epoxy. Composites of several PZT fiber diameters (15, 45, 120, and 250 μm), with the fiber volume fraction fixed at ∼0.4, were investigated. Transducers comprised of electrode and poled plates of the composites, in which the plate thickness direction was in the fiber axis direction, were made. Power generation experiments were conducted by dropping a 33 g stainless steel ball onto the electroded face of each transducer from a height of 10 cm and recording the output voltage on an oscilloscope. A peak voltage of 350 V corresponding to 120 mW of peak power was obtained. The output voltage and power was the highest for the transducers made with the smallest diameter fibers (15μm) and increased with increasing of transducer thickness. The average piezoelectric coefficient, d33, of the transducers was about 300 pC/N and decreased with decreasing transducer thickness. In this paper, the power generation capability and dielectric properties of the laminated 1–3 fiber composites are discussed.

2017 ◽  
Vol 52 (9) ◽  
pp. 1171-1182 ◽  
Author(s):  
Abdelkader Rjafallah ◽  
Abdelowahed Hajjaji ◽  
Fouad Belhora ◽  
Daniel Guyomar ◽  
Laurence Seveyrat ◽  
...  

The microelectromechanical systems invade gradually the market with applications in many sectors of activity. Developing these micro-systems allows deploying wireless sensor networks that are useful to collect, process and transmit information from their environments without human intervention. In order to keep these micro-devices energetically autonomous without using batteries because they have a limited lifespan, an energy harvesting from ambient vibrations using electrostrictive polymers can be used. These polymers present best features against inorganic materials, as flexibility and low cost. The aims of this paper are manifold. First of all, we made elaboration of the polyurethane/lead zirconate titanate films of 100 µm thickness using a lead zirconate titanate–volume fraction of [Formula: see text]%. Therefore, we did an observation of the lead zirconate titanate grains dispersion and the electrical characterization of the polyurethane–50 vol% lead zirconate titanate composites. Finally, a detailed study of the electromechanical transduction, for the polyurethane–50 vol% lead zirconate titanate unpolarized and polarized composites sustained to the sinusoidal mechanical strain with amplitude of 1.5% and at very low frequencies ( f = 2 [Hz] and f = 4 [Hz]) and static electric field ( Edc = 10 [ V/µm]) or without it ( Edc = 0 [ V/µm]) has been presented.


Author(s):  
Alper Erturk ◽  
Steven R. Anton ◽  
Onur Bilgen ◽  
Daniel J. Inman

Vibration-to-electricity conversion using piezoelectric transduction has been studied by several researchers over the last decade. PZT (lead zirconate titanate) - based piezoelectric ceramics such as PZT-5A and PZT-5H have been very frequently employed in design of piezoelectric energy harvester beams. Recently, the single-crystal piezoceramics PMN-PT (lead magnesium niobate – lead titanate) and PMN-PZT (lead magnesium niobate – lead zirconate titanate) have also been investigated for electrical power generation due to their large piezoelectric constants (particularly the d31 constant for the bending mode). Piezoelectric, elastic and dielectric properties of these piezoceramics differ from each other considerably. Even though the d31 constants of two piezoceramics might differ by an order of magnitude (e.g. PZT-5A and PMN-PZT), this large difference is not necessarily the case for their power outputs. It is theoretically discussed and experimentally demonstrated in this paper that the d31 piezoelectric constant alone is an insufficient parameter for selecting the best piezoelectric material to design a power generator for vibration-based energy harvesting. Elastic compliance of a piezoceramic has a strong effect on its electrical power output. In addition, since these devices are usually designed for resonance excitation, mechanical damping constitutes another parameter that might change the entire picture regarding the power generation performance. The last one is particularly critical considering the fact that it is difficult to control mechanical damping due to clamped interfaces and adhesive layers in practice. Theoretical comparisons are given for geometrically identical bimorphs with PZT-5A, PZT-5H, PMN-PT (with 30% PT), PMN-PT (with 33% PT) and PMN-PZT layers using an experimentally validated distributed-parameter electromechanical model. Two experimental demonstrations are presented. The first case compares two geometrically identical bimorphs (using PZT-5A and PZT-5H piezoceramics) and shows that the bimorph with PZT-5A can generate larger power than the one with PZT-5H in spite of the larger d31 constant of the latter. The second experimental case compares the power generation performances of a PZT-5H unimorph and a PMN-PZT unimorph. In agreement with the theory, considerably large damping identified for the PMN-PZT unimorph results in much lower power output compared to that of the PZT-5H unimorph.


2021 ◽  
Author(s):  
SNEHAMOYEE HAZRA ◽  
Subhamita Sengupta ◽  
Soumyaranjan Ratha ◽  
Ankita Ghatak ◽  
Arup Kumar Raychaudhuri ◽  
...  

Abstract The high internal resistance of the perovskite materials used in Nanogenerators (NGs) lowers the power generation. It severely restricts their application for mechanical energy harvesting from the ambient source. In this work, we demonstrate a flexible Piezoelectric NG (PENG) with an improved device structure. Hydrothermally grown one-dimensional Lead Zirconate Titanate (Pb(ZrTi)O3) of different morphologies are used as the generating material. The morphology of the PZT nanostructures, engineered from nanoparticles to needle-shaped nanowires to increase the surface to volume ratio, provides effective mechanical contact with the electrode. The reduction of the internal resistance of the PENG has been achieved by two ways: i) fabrication of interdigitated electrodes (IDE) to increase the interfacial polarization and ii) lowering of Schottky barrier height (SBH) at the junction of the PZT nanostructure and the metal electrode by varying the electrode materials of different work functions. We find that lowering of the SBH at the interface contributes to an increased piezo voltage generation. The flexible nano needles-based PENG can deliver output voltage 9.5 V and power density 615 μW/cm2 on application low mechanical pressure (~1 kPa) by tapping motion. The internal resistance of the device is ~0.65 MΩ. It can charge a 35 μF super-capacitor up to 5 V within 20 s. This study provides a systematic pathway to solve the bottlenecks in the piezoelectric nanogenerators due to the high internal resistance.


2018 ◽  
Vol 53 (3) ◽  
pp. 345-352 ◽  
Author(s):  
R Farhan ◽  
M Rguiti ◽  
A Eddiai ◽  
M Mazroui ◽  
M Meddad ◽  
...  

By means of experimental tools, we have studied the effect of lead zirconate titanate volume fraction introduced in polyamide-6/lead zirconate titanate composites on dielectric, piezoelectric, mechanical, and structural properties. As the first result, we found that the insertion of lead zirconate titanate particles makes the dielectric permittivity of the polyamide-6 matrix increases from 10 to 95.8. The dielectric property studies reveal that under an electrical field of 1 kV the remnant polarization is also increased from 0.17 to 0.4, this behavior is related to both the increase of volume fraction of lead zirconate titanate from 20% to 40% and the piezoelectric coefficient changes proportionally with that of volume fraction of lead zirconate titanate. Furthermore, piezoelectric activity increases with lead zirconate titanate particle size at a range where there is a lower order of magnitude. Finally, the uniform dispersion of the ceramic lead zirconate titanate particles in polyamide matrix has been confirmed by scanning electron microscopy analysis. The performances reached by polyamide-6/lead zirconate titanate composites open new horizons for energy harvesting and actuators.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kai Liu ◽  
Qingqing Zhang ◽  
Chenyang Zhou ◽  
Yusheng Shi ◽  
Ce Sun ◽  
...  

Lead zirconate titanate (PZT) piezoelectric composites used in transducers were fabricated via direct ink writing (DIW) combined with furnace sintering and resin impregnation. A ceramic slurry with a volume fraction of 52 vol% and suitable viscoelasticity was prepared. After post-process, the PZT ceramic specimens showed a nanoscale grain size with a density of 7.63 g/cm3, accounting for 97.8% of the theoretical density. The effects of different printing rod spacing on the electrical properties of composites were evaluated and lucubrated. Finally, an underwater acoustic transducer was assembled by using the PZT piezoelectric composites fabricated by the above method. The electrical signal generated by the underwater acoustic transducer changed autonomously with the acoustic stimulation, which indicated the application mode of 4D printing in functional devices in the future.


Author(s):  
S. Banerjee ◽  
K. A. Cook-Chennault

Two-phase PZT-epoxy piezoelectric composites and three phase PZT-epoxy-Al composites were fabricated using a poling voltage of 0.2 kV/mm. The influence of aluminum inclusion size (nano and micron) and (lead zirconate titanate) PZT volume fraction on the dielectric properties of the three phase PZT-epoxy-aluminum composites were experimentally investigated. In general, dielectric and piezoelectric properties of the PZT-epoxy matrix were improved with the addition of aluminum particles. Composites that were comprised of micron scale aluminum inclusions demonstrated higher piezoelectric d33-strain-coefficients, and higher dielectric loss compared to composites that were comprised of nanosize aluminum inclusions. Specifically, composites comprised of micron sized aluminum particles and PZT volume fractions of 20%, 30%, and 40% had dielectric constants equal to 405.7, 661.4, and 727.8 (pC/N), respectively, while composites comprised of nanosize aluminum particles with the same PZT volume fractions, had dielectric constants equal to 233.28, 568.81, and 657.41 (pC/N), respectively. The electromechanical properties of the composites are influenced by several factors: inclusion agglomeration, contact resistance between particles, and air voids. These composites may be useful for several applications: structural health monitoring, energy harvesting, and acoustic liners.


Sign in / Sign up

Export Citation Format

Share Document