Mechanical energy harvesting using polyurethane/lead zirconate titanate composites

2017 ◽  
Vol 52 (9) ◽  
pp. 1171-1182 ◽  
Author(s):  
Abdelkader Rjafallah ◽  
Abdelowahed Hajjaji ◽  
Fouad Belhora ◽  
Daniel Guyomar ◽  
Laurence Seveyrat ◽  
...  

The microelectromechanical systems invade gradually the market with applications in many sectors of activity. Developing these micro-systems allows deploying wireless sensor networks that are useful to collect, process and transmit information from their environments without human intervention. In order to keep these micro-devices energetically autonomous without using batteries because they have a limited lifespan, an energy harvesting from ambient vibrations using electrostrictive polymers can be used. These polymers present best features against inorganic materials, as flexibility and low cost. The aims of this paper are manifold. First of all, we made elaboration of the polyurethane/lead zirconate titanate films of 100 µm thickness using a lead zirconate titanate–volume fraction of [Formula: see text]%. Therefore, we did an observation of the lead zirconate titanate grains dispersion and the electrical characterization of the polyurethane–50 vol% lead zirconate titanate composites. Finally, a detailed study of the electromechanical transduction, for the polyurethane–50 vol% lead zirconate titanate unpolarized and polarized composites sustained to the sinusoidal mechanical strain with amplitude of 1.5% and at very low frequencies ( f = 2 [Hz] and f = 4 [Hz]) and static electric field ( Edc = 10 [ V/µm]) or without it ( Edc = 0 [ V/µm]) has been presented.

2019 ◽  
Vol 86 (1) ◽  
pp. 10902 ◽  
Author(s):  
Yassine Tabbai ◽  
Fouad Belhora ◽  
Reddad El Moznine ◽  
Abdelowahed Hajjaji ◽  
Abdessamad El Ballouti

We deal with the thermal energy which is one of the ambient energy sources surely exploitable, but it has not been much interest as the mechanical energy. In the last decades, direct energy conversion devices received particular attention because of the need to develop flexible systems, autonomous and self-powered. The energy harvesting aims to make the systems, autonomous in terms of energy and to contribute to sustainable development by the total respect of the environment. In this paper, our aim is to use thermal energy and show that it's an important source for producing the electrical energy through pyroelectric effect: first, elaborate charged polyurethane (PU) with different proportions (20%, 30% and 40%) of lead zirconate titanate (PZT), then to use those PZT/PU composites as a pyroelectric energy harvesting systems. Secondly, the optimization of energy harvesting and storage. The PZT/PU composite prepared is considered as one of the most promising composites for energy harvesting systems, due its various advantages, such as mechanical flexibility, high temperature sensitivity, low cost as well as its high electro-active functional properties. The current generated by all samples for temperature fluctuations over a period of time in the order of 140 s have been rectified and stored in a charge capacitor of 1μF. The stored energy can reach a maximum value in the order of 14μW for a composite loaded with 40% PZT. Therefore, these composites show an interesting potential to be used in various applications. These results shed light on the thermoelectric energy conversion by a new composite of PZT/PU having the pyroelectric property.


2018 ◽  
Vol 53 (5) ◽  
pp. 613-623 ◽  
Author(s):  
Abdelkader Rjafallah ◽  
Abdelowahed Hajjaji ◽  
Daniel Guyomar ◽  
Khalid Kandoussi ◽  
Fouad Belhora ◽  
...  

Collecting the vibration energy existing in the surrounding environment and its transformation to a useful electrical energy in order to supply ultra-low power systems remains an emerging and promising technology. During the last decades, most of research efforts dealt with energy-harvesting technology using piezoelectric ceramics. However, those materials are stiff and limited in mechanical strain abilities. In addition, they lose their stiffness and piezoelectricity at high levels of mechanical strain. Thus, they are unsuitable for many applications in which low frequency and high strain level are required. However, electrostrictive polymers are lightweight, very flexible, have low manufacturing costs and are easy to mould into any desired shapes. These special properties led to them being considered as potential actuators. However, it is not well known that these materials also can be used for mechanical-to-electrical energy harvesting. In this research paper, electromechanical characterization of polymer/lead zirconate titanate composites was extended. The first part develops the analytical model predicting the energy harvested by polyurethane/PZT composites from electrical and mechanical properties of their constituent materials. Indeed, this model was based on the approach of representing the experimental setup with an equivalent electrical scheme. The second part focuses on the assessment of model performance by comparison between predicted and observed values. As a result, good agreements were observed between the two sets of data; in addition, the model could be used to optimize the choice of constituent materials. The last part concerns the contribution of both the electrostrictive effect and piezoelectric effect in electrical powers harvested by PU/PZT composites.


2019 ◽  
Vol 23 (5) ◽  
pp. 1010-1023 ◽  
Author(s):  
Naveet Kaur ◽  
Dasari Mahesh ◽  
Sreenitya Singamsetty

Energy harvesting is an emerging technology holding promise of sustainability amid the alarming rate at which the human community is depleting the natural resources to cater its needs. There are several ways of harvesting energy in a renewable fashion such as through solar, wind, hydro-electric, geothermal, and artificial photosynthesis. This study focuses on energy harvesting from wind vibrations and ambient structural vibrations (such as from rail and road bridges) through piezo transducers using the direct piezoelectric effect. First, the potential of the piezoelectric energy harvesting from ambient wind vibrations has been investigated and presented here. Lead zirconate titanate patches have been attached at the fixed end of aluminum rectangular and trapezoidal cantilevers, which have been exposed to varying wind velocity in a lab-size wind tunnel. The effect of perforations and twisting (distortion) on the power generated by the patches under varying wind velocity has also been studied. It has been observed that the power is comparatively higher in rectangular-shaped cantilever than the trapezoidal one. Perforations and shape distortion showed promising result in terms of higher yield. The laboratory experiments have also been extended to the real-life field condition to measure the actual power generated by the lead zirconate titanate patches under the ambient wind vibrations. Next, energy harvesting from the ambient structural vibrations has been done both experimentally and numerically. Four different prototypes have been considered. The power has been measured across the lead zirconate titanate patches individually and in parallel combination. A maximum power output for Prototype 1 to Prototype 4 has been found to be 4.3428, 11.844, 25.97, and 43.12 µW, respectively. Numerical study has also been carried out in ANSYS 14.5 to perform the parametric study to examine the effect of addition of mass at the free end of cantilever. In a nutshell, this article provides a comprehensive study on the effect of various factors on the amount of energy generated by piezoelectric patches under wind and structural vibrations. The energy generated is sufficient for driving low-power-consuming electronics that can further be used for other applications like wireless structural health monitoring, and so on.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


2000 ◽  
Vol 657 ◽  
Author(s):  
L.-P. Wang ◽  
R. Wolf ◽  
Q. Zhou ◽  
S. Trolier-McKinstry ◽  
R. J. Davis

ABSTRACTLead zirconate titanate (PZT) films are very attractive for microelectromechanical systems (MEMS) applications because of their high piezoelectric coefficients and good electromechanical coupling. In this work, wet-etch patterning of sol-gel PZT films for MEMS applications, typically with film thicknesses ranging from 2 to 10 microns, was studied. A two- step wet-etch process was developed. In the first step, 10:1 buffered HF is used to remove the majority of the film at room temperature. Then a solution of 2HCl:H2O at 45°C is used to remove metal-fluoride residues remaining from the first step. This enabled successful patterning of PZT films up to 8 microns thick. A high etch rate (0.13μm/min), high selectivity with respect to photoresist, and limited undercutting (2:1 lateral:thickness) were obtained. The processed PZT films have a relative permittivity of 1000, dielectric loss of 1.6%, remanent polarization (Pr) of 24μC/cm2, and coercive field (Ec) of 42.1kV/cm, all similar to those of unpatterned films of the same thickness.


2021 ◽  
Author(s):  
SNEHAMOYEE HAZRA ◽  
Subhamita Sengupta ◽  
Soumyaranjan Ratha ◽  
Ankita Ghatak ◽  
Arup Kumar Raychaudhuri ◽  
...  

Abstract The high internal resistance of the perovskite materials used in Nanogenerators (NGs) lowers the power generation. It severely restricts their application for mechanical energy harvesting from the ambient source. In this work, we demonstrate a flexible Piezoelectric NG (PENG) with an improved device structure. Hydrothermally grown one-dimensional Lead Zirconate Titanate (Pb(ZrTi)O3) of different morphologies are used as the generating material. The morphology of the PZT nanostructures, engineered from nanoparticles to needle-shaped nanowires to increase the surface to volume ratio, provides effective mechanical contact with the electrode. The reduction of the internal resistance of the PENG has been achieved by two ways: i) fabrication of interdigitated electrodes (IDE) to increase the interfacial polarization and ii) lowering of Schottky barrier height (SBH) at the junction of the PZT nanostructure and the metal electrode by varying the electrode materials of different work functions. We find that lowering of the SBH at the interface contributes to an increased piezo voltage generation. The flexible nano needles-based PENG can deliver output voltage 9.5 V and power density 615 μW/cm2 on application low mechanical pressure (~1 kPa) by tapping motion. The internal resistance of the device is ~0.65 MΩ. It can charge a 35 μF super-capacitor up to 5 V within 20 s. This study provides a systematic pathway to solve the bottlenecks in the piezoelectric nanogenerators due to the high internal resistance.


Sign in / Sign up

Export Citation Format

Share Document