Piezoelectric Nanogenerators based on Lead Zirconate Titanate nanostructures: An insight into the effect of potential barrier and morphology on the output power generation

2021 ◽  
Author(s):  
SNEHAMOYEE HAZRA ◽  
Subhamita Sengupta ◽  
Soumyaranjan Ratha ◽  
Ankita Ghatak ◽  
Arup Kumar Raychaudhuri ◽  
...  

Abstract The high internal resistance of the perovskite materials used in Nanogenerators (NGs) lowers the power generation. It severely restricts their application for mechanical energy harvesting from the ambient source. In this work, we demonstrate a flexible Piezoelectric NG (PENG) with an improved device structure. Hydrothermally grown one-dimensional Lead Zirconate Titanate (Pb(ZrTi)O3) of different morphologies are used as the generating material. The morphology of the PZT nanostructures, engineered from nanoparticles to needle-shaped nanowires to increase the surface to volume ratio, provides effective mechanical contact with the electrode. The reduction of the internal resistance of the PENG has been achieved by two ways: i) fabrication of interdigitated electrodes (IDE) to increase the interfacial polarization and ii) lowering of Schottky barrier height (SBH) at the junction of the PZT nanostructure and the metal electrode by varying the electrode materials of different work functions. We find that lowering of the SBH at the interface contributes to an increased piezo voltage generation. The flexible nano needles-based PENG can deliver output voltage 9.5 V and power density 615 μW/cm2 on application low mechanical pressure (~1 kPa) by tapping motion. The internal resistance of the device is ~0.65 MΩ. It can charge a 35 μF super-capacitor up to 5 V within 20 s. This study provides a systematic pathway to solve the bottlenecks in the piezoelectric nanogenerators due to the high internal resistance.

2017 ◽  
Vol 52 (9) ◽  
pp. 1171-1182 ◽  
Author(s):  
Abdelkader Rjafallah ◽  
Abdelowahed Hajjaji ◽  
Fouad Belhora ◽  
Daniel Guyomar ◽  
Laurence Seveyrat ◽  
...  

The microelectromechanical systems invade gradually the market with applications in many sectors of activity. Developing these micro-systems allows deploying wireless sensor networks that are useful to collect, process and transmit information from their environments without human intervention. In order to keep these micro-devices energetically autonomous without using batteries because they have a limited lifespan, an energy harvesting from ambient vibrations using electrostrictive polymers can be used. These polymers present best features against inorganic materials, as flexibility and low cost. The aims of this paper are manifold. First of all, we made elaboration of the polyurethane/lead zirconate titanate films of 100 µm thickness using a lead zirconate titanate–volume fraction of [Formula: see text]%. Therefore, we did an observation of the lead zirconate titanate grains dispersion and the electrical characterization of the polyurethane–50 vol% lead zirconate titanate composites. Finally, a detailed study of the electromechanical transduction, for the polyurethane–50 vol% lead zirconate titanate unpolarized and polarized composites sustained to the sinusoidal mechanical strain with amplitude of 1.5% and at very low frequencies ( f = 2 [Hz] and f = 4 [Hz]) and static electric field ( Edc = 10 [ V/µm]) or without it ( Edc = 0 [ V/µm]) has been presented.


Author(s):  
Alper Erturk ◽  
Steven R. Anton ◽  
Onur Bilgen ◽  
Daniel J. Inman

Vibration-to-electricity conversion using piezoelectric transduction has been studied by several researchers over the last decade. PZT (lead zirconate titanate) - based piezoelectric ceramics such as PZT-5A and PZT-5H have been very frequently employed in design of piezoelectric energy harvester beams. Recently, the single-crystal piezoceramics PMN-PT (lead magnesium niobate – lead titanate) and PMN-PZT (lead magnesium niobate – lead zirconate titanate) have also been investigated for electrical power generation due to their large piezoelectric constants (particularly the d31 constant for the bending mode). Piezoelectric, elastic and dielectric properties of these piezoceramics differ from each other considerably. Even though the d31 constants of two piezoceramics might differ by an order of magnitude (e.g. PZT-5A and PMN-PZT), this large difference is not necessarily the case for their power outputs. It is theoretically discussed and experimentally demonstrated in this paper that the d31 piezoelectric constant alone is an insufficient parameter for selecting the best piezoelectric material to design a power generator for vibration-based energy harvesting. Elastic compliance of a piezoceramic has a strong effect on its electrical power output. In addition, since these devices are usually designed for resonance excitation, mechanical damping constitutes another parameter that might change the entire picture regarding the power generation performance. The last one is particularly critical considering the fact that it is difficult to control mechanical damping due to clamped interfaces and adhesive layers in practice. Theoretical comparisons are given for geometrically identical bimorphs with PZT-5A, PZT-5H, PMN-PT (with 30% PT), PMN-PT (with 33% PT) and PMN-PZT layers using an experimentally validated distributed-parameter electromechanical model. Two experimental demonstrations are presented. The first case compares two geometrically identical bimorphs (using PZT-5A and PZT-5H piezoceramics) and shows that the bimorph with PZT-5A can generate larger power than the one with PZT-5H in spite of the larger d31 constant of the latter. The second experimental case compares the power generation performances of a PZT-5H unimorph and a PMN-PZT unimorph. In agreement with the theory, considerably large damping identified for the PMN-PZT unimorph results in much lower power output compared to that of the PZT-5H unimorph.


2000 ◽  
Vol 15 (7) ◽  
pp. 1546-1550 ◽  
Author(s):  
Frank McNally ◽  
Jin Hyeok Kim ◽  
F. F. Lange

A liquid-precursor process was used to produce an epitaxial all-oxide ferroelectric memory device structure. The lanthanum strontium manganate–lead zirconate titanate–lanthanum strontium manganate (LSMO–PZT–LSMO) structure used for this device shows excellent polarization and fatigue behavior with a remnant polarization Pr of 42 µC/cm2 and a coercive field Ec of 68 keV. The polarization was found to only slightly degrade after over 1010 fatigue cycles. This behavior is contrasted with epitaxial PZT using a metal top electrode. In addition, the use of a top LSMO electrode was a sufficient barrier to Pb loss during heating to allow subsequent (or prolonged) heat treatments that would generally lead to Pb loss.


2019 ◽  
Vol 86 (1) ◽  
pp. 10902 ◽  
Author(s):  
Yassine Tabbai ◽  
Fouad Belhora ◽  
Reddad El Moznine ◽  
Abdelowahed Hajjaji ◽  
Abdessamad El Ballouti

We deal with the thermal energy which is one of the ambient energy sources surely exploitable, but it has not been much interest as the mechanical energy. In the last decades, direct energy conversion devices received particular attention because of the need to develop flexible systems, autonomous and self-powered. The energy harvesting aims to make the systems, autonomous in terms of energy and to contribute to sustainable development by the total respect of the environment. In this paper, our aim is to use thermal energy and show that it's an important source for producing the electrical energy through pyroelectric effect: first, elaborate charged polyurethane (PU) with different proportions (20%, 30% and 40%) of lead zirconate titanate (PZT), then to use those PZT/PU composites as a pyroelectric energy harvesting systems. Secondly, the optimization of energy harvesting and storage. The PZT/PU composite prepared is considered as one of the most promising composites for energy harvesting systems, due its various advantages, such as mechanical flexibility, high temperature sensitivity, low cost as well as its high electro-active functional properties. The current generated by all samples for temperature fluctuations over a period of time in the order of 140 s have been rectified and stored in a charge capacitor of 1μF. The stored energy can reach a maximum value in the order of 14μW for a composite loaded with 40% PZT. Therefore, these composites show an interesting potential to be used in various applications. These results shed light on the thermoelectric energy conversion by a new composite of PZT/PU having the pyroelectric property.


2012 ◽  
Vol 535-537 ◽  
pp. 1507-1511 ◽  
Author(s):  
De Yi Zheng ◽  
Jonathan Swingler ◽  
Paul M. Weaver

Piezoelectric materials because their special ability to convert bwteen kinetic energy and electrical energy. Therefore, they are widely applicated in the areas such as sensors, resonators etc. However, the electrical degradation phenomenon of piezoelectric materials will cause the degradation of their performance. The electrode materails has been reported can severely influence the electrical degradation of piezoelectric materials. In this paper, the life time of the lead zirconate titanate capacitors with nickel, gold or silver electrodes are investigated. It is suggested that, the poor migration ability of the electrode elements gives the PZT capacitors a longer lifetime. The reason of no observation of the electrode materials in the capacitor material is also discussed.


2018 ◽  
Vol 11 (6) ◽  
pp. 1425-1430 ◽  
Author(s):  
Eun Jung Lee ◽  
Tae Yun Kim ◽  
Sang-Woo Kim ◽  
Sunho Jeong ◽  
Youngmin Choi ◽  
...  

A high-performance piezoelectric nanocomposite generator (PNG) based on chemically reinforced composites is demonstrated by incorporating amine-functionalized lead zirconate titanate (PZT-NH2) nanoparticles into a polymer matrix.


2002 ◽  
Vol 736 ◽  
Author(s):  
Farhad Mohammadi ◽  
Ajmal Khan ◽  
Richard B. Cass

ABSTRACTPower generation from lead zirconate titanate (PZT) piezoelectric fibers in the form of 1–3 composites under application of an external force was investigated. Green fibers consisting of PZT powder dispersed in a cellulose binder were made by the Viscous Suspension Spinning Process (VSSP). The composites were made by firing sheets of parallel green PZT fibers at 1270 °C, and then laminating the sintered sheets in epoxy. Composites of several PZT fiber diameters (15, 45, 120, and 250 μm), with the fiber volume fraction fixed at ∼0.4, were investigated. Transducers comprised of electrode and poled plates of the composites, in which the plate thickness direction was in the fiber axis direction, were made. Power generation experiments were conducted by dropping a 33 g stainless steel ball onto the electroded face of each transducer from a height of 10 cm and recording the output voltage on an oscilloscope. A peak voltage of 350 V corresponding to 120 mW of peak power was obtained. The output voltage and power was the highest for the transducers made with the smallest diameter fibers (15μm) and increased with increasing of transducer thickness. The average piezoelectric coefficient, d33, of the transducers was about 300 pC/N and decreased with decreasing transducer thickness. In this paper, the power generation capability and dielectric properties of the laminated 1–3 fiber composites are discussed.


Sign in / Sign up

Export Citation Format

Share Document