Deformation and Coble Creep of Nanocrystalline Materials

2002 ◽  
Vol 740 ◽  
Author(s):  
C.S. Pande ◽  
R. A. Masumura

ABSTRACTModeling of strengthening by nanocrystalline materials need consideration of dislocation interactions and sliding due to Coble creep, both of which may be acting simultaneously. Such a mechanism is considered in this paper. It is shown that a model based on using Coble creep (with a threshold stress) for finer grains and conventional Hall-Petch strengthening for larger grains, appears to be most successful in explaining experimental results provided care is taken to incorporate into the analysis the effect of grain size distribution occurring in most specimens. A generalized expression relating yield stress to grain size is also proposed.

2004 ◽  
Vol 821 ◽  
Author(s):  
A.V. Sergueeva ◽  
N.A. Mara ◽  
A.K. Mukherjee

AbstractGrain size distribution effect on the mechanical behavior of NiTi and Vitroperm alloys were investigated. Yielding at significantly lower stresses than found in equiaxed counterparts, along with well defined strain hardening was observed in these nanocrystalline materials with large grains embedded in the matrix during tensile deformation at temperatures of 0.4Tm. At higher temperature the effect of grain size distribution on yield stress was not revealed while plasticity was increased in 50% in NiTi alloy with bimodal grain size structure.


2000 ◽  
Vol 634 ◽  
Author(s):  
Carl C. Koch ◽  
J. Narayan

ABSTRACTThis paper critically reviews the data in the literature which gives softening—the inverse Hall-Petch effect—at the finest nanoscale grain sizes. The difficulties with obtaining artifactfree samples of nanocrystalline materials will be discussed along with the problems of measurement of the average grain size distribution. Computer simulations which predict the inverse Hall-Petch effect are also noted as well as the models which have been proposed for the effect. It is concluded that while only a few of the experiments which have reported the inverse Hall-Petch effect are free from obvious or possible artifacts, these few along with the predictions of computer simulations suggest it is real. However, it seems that it should only be observed for grain sizes less than about 10 nm.


2018 ◽  
Author(s):  
Jérémy Lepesqueur ◽  
Renaud Hostache ◽  
Núria Martínez-Carreras ◽  
Emmanuelle Montargès-Pelletier ◽  
Christophe Hissler

Abstract. Hydromorphodynamic models are powerful tools to predict the potential mobilization and transport of sediment in river ecosystems. Recent studies even showed that they are able to satisfyingly predict suspended sediment matter concentration in small river systems. However, modelling exercises often neglect suspended sediment properties (e.g. particle site distribution and density), even though such properties are known to directly control the sediment particle dynamics in the water column during rising and flood events. This study has two objectives. On the one hand, it aims at further developing an existing hydromorphodynamic model based on the dynamic coupling of TELEMAC-3D (v7p1) and SISYPHE (v7p1) in order to enable an enhanced parameterisation of the sediment grain size distribution with distributed sediment density. On the other hand, it aims at evaluating and discussing the added-value of the new development for improving sediment transport and riverbed evolution predictions. To this end, we evaluate the sensitivity of the model to sediment grain size distribution, sediment density and suspended sediment concentration at the upstream boundary condition. As a test case, the model is used to simulate a flood event in a small scale river, the Orne River in North-eastern France. The results show substantial discrepancies in bathymetry evolution depending on the model setup. Moreover, the sediment model based on an enhanced sediment grain size distribution (10 classes) and with distributed sediment density outperforms the model with only two sediment grain size classes in terms of simulated suspended sediment concentration.


2014 ◽  
Vol 2 (1) ◽  
pp. 323-338 ◽  
Author(s):  
E. Viparelli ◽  
A. Blom ◽  
C. Ferrer-Boix ◽  
R. Kuprenas

Abstract. A one-dimensional model that is able to store the stratigraphy emplaced by a prograding delta is validated against experimental results. The laboratory experiment describes the migration of a Gilbert delta on a sloping basement into standing water, i.e., a condition in which the stratigraphy emplaced by the delta front is entirely stored in the deposit. The migration of the delta front and the deposition on the delta top are modeled with total and grain-size-based mass conservation models. The vertical sorting on the delta front is modeled with a lee-face-sorting model as a function of the grain size distribution of the sediment deposited at the brinkpoint, i.e., at the downstream end of the delta top. Notwithstanding the errors associated with the grain-size-specific bedload transport formulation, the comparison between numerical and experimental results shows that the model is able to reasonably describe the progradation of the delta front, the frictional resistances on the delta top, and the overall grain size distribution of the delta top and delta front deposits. Further validation of the model in the case of variable base level is currently in progress to allow for future studies, at field and laboratory scale, on how the delta stratigraphy is affected by different changes of relative base level.


2014 ◽  
Vol 1081 ◽  
pp. 132-137
Author(s):  
Song Feng Tian ◽  
Hong Jian Yu ◽  
Ying Guang Liu ◽  
Rong Yuan Ju ◽  
Xiao Dong Mi ◽  
...  

Giving a bimodal grain size distribution in nanocrystalline materials can effectively achieve both high strength and high ductility. Here we propose a theoretical model to study the failure behavior of nc materials with bimodal grain size distribution. The dependence of failure properties on grain size distribution were calculated. Numerical results show the strength and ductility of bimodal nanocrystalline materials are sensitive to grain size and the volume fraction of coarse grains.


Sign in / Sign up

Export Citation Format

Share Document