Homoepitaxial 4H-SiC films grown by microwave plasma chemical vapor deposition

2002 ◽  
Vol 742 ◽  
Author(s):  
Mitsuo Okamoto ◽  
Ryoji Kosugi ◽  
Shinichi Nakashima ◽  
Kenji Fukuda ◽  
Kazuo Arai

ABSTRACTHomoepitaxial 4H-SiC film growth has been carried out at temperatures as low as 1000°C on 4H-SiC of Si-face and C-face by microwave plasma chemical vapor deposition method. The extent of step-bunching of those films grown on C-face was low in comparison with that on Si-face, although large and irregular shaped step-bunching was occurred in both films grown on Si-face and C-face. For the first step to application for the electrical devices, the electrical properties of the μPCVD grown films was characterized by fabricating simple pn-junction structure. The obtained SiC films indicated n-type conductivity and the amount of background donor impurities of the films grown on C-face substrates were lower by one order than that on Si-face.

2005 ◽  
Vol 480-481 ◽  
pp. 71-76 ◽  
Author(s):  
Jin Chun Jiang ◽  
Wen Juan Cheng ◽  
Yang Zhang ◽  
He Sun Zhu ◽  
De Zhong Shen

Carbon nitride films were grown on Si substrates by a microwave plasma chemical vapor deposition method, using mixture of N2, CH4 and H2 as precursor. Scanning electron microscopy shows that the films consisted of a large number of hexagonal crystallites. The dimension of the largest crystallite is about 3 µm. The X-ray photoelectron spectroscopy suggests that nitrogen and carbon in the films are bonded through hybridized sp2 and sp3 configurations. The X-ray diffraction pattern indicates that the major part of the films is composed of α-, β-, pseudocubic C3N4 and graphitic C3N4. The Raman peaks match well with the calculated Raman frequencies of α- and β-C3N4, revealing the formation of the α- and β-C3N4 phase.


1996 ◽  
Vol 11 (4) ◽  
pp. 1002-1010 ◽  
Author(s):  
C. J. Chen ◽  
L. Chang ◽  
T. S. Lin ◽  
F. R. Chen

Heteroepitaxial diamond has been successfully deposited on a Si(110) substrate by the microwave plasma chemical vapor deposition method. The pretreatment consisted of carburization and bias-enhanced nucleation steps. Cross-sectional transmission electron microscopy reveals that diamond can be in the cube-on-cube epitaxial relationship with the Si substrate. Various orientation relationships between diamond and Si substrates have also been observed, depending on the location where the plasma applied. Near the center of the plasma, twins were rarely observed in cube-on-cube epitaxial regions. Away from the center of the plasma ball, Σ3 twins are seen first, and then additional Σ9 and Σ27 twins occur near the edge of the plasma. In general, defect density in the epitaxial films is less than that observed in polycrystalline ones. No interlayer could be observed between diamond and silicon. In addition, 2H-type hexagonal diamond has also been found, and is in epitaxy with the Si substrate.


Sign in / Sign up

Export Citation Format

Share Document