An In-Situ TEM-Cathodoluminescence Study of Electron Beam Degradation of Luminescence from GaN and In0.1Ga0.9N Quantum Wells

2002 ◽  
Vol 743 ◽  
Author(s):  
Nicholas M. Boyall ◽  
Ken Durose ◽  
Ian M. Watson

ABSTRACTThe effect of electron beam irradiation on the cathodoluminescence (CL) emission from In0.1Ga0.9N/GaN single quantum wells (QW) has been investigated by in-situ measurement of CL in a transmission electron microscope. Analysis of CL quenching over 600s showed that the QW luminescence decayed more quickly than the barrier emission. Both the In0.1Ga0.9N and GaN CL decay curves could be fitted to a simple recombination based model suggesting the decay was due to the introduction of non-radiative centres.

2017 ◽  
Vol 686 ◽  
pp. 44-48 ◽  
Author(s):  
Wei Wang ◽  
Xianwei Bai ◽  
Xiangxiang Guan ◽  
Xi Shen ◽  
Yuan Yao ◽  
...  

Nanoscale ◽  
2018 ◽  
Vol 10 (17) ◽  
pp. 7978-7983 ◽  
Author(s):  
Liang Cheng ◽  
Xianfang Zhu ◽  
Jiangbin Su

The coalescence of two single-crystalline Au nanoparticles on surface of amorphous SiOxnanowire, as induced by electron beam irradiation, wasin situstudied at room temperature in a transmission electron microscope.


2005 ◽  
Vol 20 (7) ◽  
pp. 1785-1791 ◽  
Author(s):  
T. Vystavel ◽  
S.A. Koch ◽  
G. Palasantzas ◽  
J.Th.M. De Hosson

The structural stability of transition metal nanoclusters has been scrutinized with in situ transmission electron microscopy as a function of temperature. In particular iron, cobalt, niobium, and molybdenum clusters with diameters around 5 nm have been investigated. During exposure to air, a thin oxide shell with a thickness of 2 nm is formed around the iron and cobalt clusters, which is thermally unstable under moderate high vacuum annealing above 200 °C. Interestingly, niobium clusters oxidize only internally at higher temperatures without the formation of an oxide shell. They are unaffected under electron beam irradiation, whereas iron and cobalt undergo severe structural changes. Further, no cluster coalescence of niobium takes place, even during annealing up to 800 °C, whereas iron and cobalt clusters coalesce after decomposition of the oxide, as long as the clusters are in close contact. In contrast to niobium, molybdenum clusters do not oxidize upon annealing; they are stable under electron beam irradiation and coalesce at temperatures higher than 800 °C. In all cases, the coalescence process indicates a strong influence of the local environment of the cluster.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1021
Author(s):  
Hui Zhang ◽  
Tao Xu ◽  
Yatong Zhu ◽  
Wen Wang ◽  
Hao Zhang ◽  
...  

Understanding the mechanism of metal oxidation processes is critical for maintaining the desired properties of metals and catalysts, as well as for designing advanced materials. In this work, we investigate the electron beam induced oxidation of silver using in situ transmission electron microscopy. The additions of Ag-O columns on {111} and {110} planes were captured with atomic resolution. Interestingly, oscillatory growth on {110} planes was observed, which resulted from the double effect of electron beam irradiation. It was found that not only thermodynamic factors but also kinetic factors played significant roles in morphology evolutions. These results can facilitate the fundamental understanding of the oxidation process of Ag and provide a promising approach for the fabrication of desired nanostructures.


2019 ◽  
Vol 49 (1) ◽  
Author(s):  
Byeong-Seon An

AbstractThe crystallization of amorphous Ge2Sb2Te5 phase change material induced by electron beam irradiation was investigated by in-situ transmission electron microscopy (TEM). Amorphous matrix transformed into a partially crystalline state after being irradiated with a 200-keV electron beam for a long time. Real-time observation revealed that the crystallization of amorphous Ge2Sb2Te5 film occurs through a nucleation and growth mechanism under electron beam irradiation in TEM. While uncertainty from the 2D projection remains, the nuclei have been observed to grow preferentially along the < 100> direction.


2009 ◽  
Vol 106 (3) ◽  
pp. 034302 ◽  
Author(s):  
Baodan Liu ◽  
Yoshio Bando ◽  
Mingsheng Wang ◽  
Chunyi Zhi ◽  
Xiaosheng Fang ◽  
...  

1995 ◽  
Vol 404 ◽  
Author(s):  
Jeff Drucker ◽  
Renu Sharma ◽  
Karl Weiss ◽  
B. L. Ramakrishna ◽  
John Kouvetakis

AbstractMaterial synthesis by chemical vapor deposition (CVD) in a number of material systems has been investigated in real time using an environmental transmission electron microscope (ETEM) with 3.8 Å resolution. Here, we will focus on two metal / insulator systems. Al CVD onto SiO2 from trimethyl amine alane and Au CVD from ethyl (trimethylphosphine) gold (I), also onto SiO2. For Al deposition, dendritic growth was observed for all pressure / substrate temperature combinations investigated for growth on untreated SiO2. Subsequent to reaction of the substrate surface with TiC14, almost immediate continuous Al film growth was observed. Growth rates for the Al film could be measured in situ by monitoring the evolution of the growth front at the Al/vacuum interface. In this system, very little enhancement in the metal film growth rate was observed as a consequence of electron beam irradiation for continuous films grown after TiCl4 pretreatment.. This dramatically contrasts with the case of Au CVD investigated. In this instance, growth rate enhancements of up to 150 times were observed during electron beam irradiation as compared to purely pyrolytic decomposition of the precursor on the insulator surface. This growth rate enhancement decreased monotonically with substrate temperature. We surmise that this effect is related to the ratio of precursor surface residence time prior to ecomposition to the probability of collision from the impinging electron beam.


Sign in / Sign up

Export Citation Format

Share Document