Boron Diffusion in Polycrystalline Silicon

1986 ◽  
Vol 76 ◽  
Author(s):  
Moustafa Y. Ghannam ◽  
Robert W. Dutton ◽  
Steven W. Novak

ABSTRACTThe diffusion of boron in ion implanted LPCVD polycrystalline silicon is shown to be dominated by grain boundary diffusion at low and moderate concentrations. The diffusion coefficient is 2 to 3 orders of magnitude larger than its value in crystalline silicon. In preannealed polysilicon, the boron diffusion coefficient is found to be 30% smaller than in polysilicon annealed after implantation. This reflects the effect of the grain size in the diffusion coefficient since preannealed polysilicon has larger grains and smaller density of grain boundaries per unit area.

1998 ◽  
Vol 527 ◽  
Author(s):  
E. Rabkin ◽  
W. Gust

ABSTRACTWe consider the problem of solute diffusion and segregation in the grain boundaries moving during a phase transformation in the framework of Cahn's impurity drag model. The concept of a dynamic segregation factor for the diffusion along moving grain boundaries is introduced. The difference between static and dynamic segregation factors may cause the apparent difference of the triple product of the segregation factor, grain boundary width and grain boundary diffusion coefficient for stationary and moving grain boundaries. The difference between static and dynamic segregation is experimentally verified for the Cu(In)-Bi system, for which the parameters of static segregation are well-known. It is shown that the complications associated with the dynamic segregation may be avoided during the study of the discontinuous ordering reaction. From the kinetics of this reaction, the activation energy of the grain boundary self-diffusion can be determined.


1993 ◽  
Vol 313 ◽  
Author(s):  
John G. Holl-Pellerin ◽  
S.G.H. Anderson ◽  
P.S. Ho ◽  
K.R. Coffey ◽  
J.K. Howard ◽  
...  

ABSTRACTX-ray photoelectron spectroscopy (XPS) has been used to investigate grain boundary diffusion of Cu and Cr through 1000 Å thick Co films in the temperature range of 325°C to 400°C. Grain boundary diffusivities were determined by modeling the accumulation of Cu or Cr on Co surfaces as a function of time at fixed annealing temperature. The grain boundary diffusivity of Cu through Co is characterized by a diffusion coefficient, D0gb, of 2 × 104 cm2/sec and an activation energy, Ea,gb, of 2.4 eV. Similarly, Cr grain boundary diffusion through Co thin films occurs with a diffusion coefficient, Do,gb, of 6 × 10-2cm2/sec and an activation energy, Ea,gb of 1.8 eV. The Co film microstructure has been investigated before and after annealing by x-ray diffraction and transmission electron Microscopy. Extensive grain growth and texturing of the film occurred during annealing for Co deposited on a Cu underlayer. In contrast, the microstructure of Co deposited on a Cr underlayer remained relatively unchanged upon annealing. Magnetometer Measurements have shown that increased in-plane coercivity Hc, reduced remanence squareness S, and reduced coercive squareness S* result from grain boundary diffusion of Cu and Cr into the Co films.


1983 ◽  
Vol 25 ◽  
Author(s):  
E. C. Zingu ◽  
J. W. Mayer

ABSTRACTInterdiffusion in the Si<100>/Pd2Si/Ni and Si<111>/Pd2Si/Ni thin film systems has been investigated using Rutherford backscattering spectrometry. Nickel is found to diffuse along the grain boundaries of polycrystalline Pd2Si upon which it accumulates at the Si<100>Pd2Si interface. The high mobility of Ni compared to that of si suggests that Pd diffuses faster than Si along the Pd2Si grain boundaries. An activation energy of 1.2 eV is determined for Ni grain boundary diffusion in Pd2Si.


2004 ◽  
Vol 821 ◽  
Author(s):  
Markus J. Buehler ◽  
Alexander Hartmaier ◽  
Huajian Gao

AbstractIn a recent study of diffusional creep in polycrystalline thin films deposited on substrates, we have discovered a new class of defects called the grain boundary diffusion wedges (Gao et al., Acta Mat. 47, pp. 2865-2878, 1999). These diffusion wedges are formed by stress driven mass transport between the free surface of the film and the grain boundaries during the process of substrate-constrained grain boundary diffusion. The mathematical modeling involves solution of integro-differential equations representing a strong coupling between elasticity and diffusion. The solution can be decomposed into diffusional eigenmodes reminiscent of crack-like opening displacement along the grain boundary which leads to a singular stress field at the root of the grain boundary. We find that the theoretical analysis successfully explains the difference between the mechanical behaviors of passivated and unpassivated copper films during thermal cycling on a silicon substrate. An important implication of our theoretical analysis is that dislocations with Burgers vector parallel to the interface can be nucleated at the root of the grain boundary. This is a new dislocation mechanism in thin films which contrasts to the well known Mathews-Freund-Nix mechanism of threading dislocation propagation. Recent TEM experiments at the Max Planck Institute for Metals Research have shown that, while threading dislocations dominate in passivated metal films, parallel glide dislocations begin to dominate in unpassivated copper films with thickness below 400 nm. This is consistent with our theoretical predictions. We have developed large scale molecular dynamics simulations of grain boundary diffusion wedges to clarify the nucleation mechanisms of parallel glide in thin films. Such atomic scale simulations of thin film diffusion not only show results which are consistent with both continuum theoretical and experimental studies, but also revealed the atomic processes of dislocation nucleation, climb, glide and storage in grain boundaries. The study should have far reaching implications for modeling deformation and diffusion in micro- and nanostructured materials.


2005 ◽  
Vol 237-240 ◽  
pp. 163-168 ◽  
Author(s):  
M.A.N. Nogueira ◽  
Antônio Claret Soares Sabioni ◽  
Wilmar Barbosa Ferraz

This work deals with the study of zinc self-diffusion in ZnO polycrystal of high density and of high purity. The diffusion experiments were performed using the 65Zn radioactive isotope as zinc tracer. A thin film of the tracer was deposited on the polished surface of the samples, and then the diffusion annealings were performed from 1006 to 1377oC, in oxygen atmosphere. After the diffusion treatment, the 65Zn diffusion profiles were established by means of the Residual Activity Method. From the zinc diffusion profiles were deduced the volume diffusion coefficient and the product dDgb for the grain-boundary diffusion, where d is the grain-boundary width and Dgb is the grain-boundary diffusion coefficient. The results obtained for the volume diffusion coefficient show good agreement with the most recent results obtained in ZnO single crystals using stable tracer and depth profiling by secondary ion mass spectrometry, while for the grain-boundary diffusion there is no data published by other authors for comparison with our results. The zinc grain-boundary diffusion coefficients are ca. 4 orders of magnitude greater than the volume diffusion coefficients, in the same experimental conditions, which means that grain-boundary is a fast path for zinc diffusion in polycrystalline ZnO.


2007 ◽  
Vol 345-346 ◽  
pp. 565-568
Author(s):  
Byung Nam Kim ◽  
Keijiro Hiraga ◽  
Koji Morita ◽  
Hidehiro Yoshida

For steady-state deformation caused by grain-boundary diffusion and viscous grain-boundary sliding, the creep rate of regular polyhedral grains is analyzed by the energy-balance method. For the microstructure, the grain-grain interaction increases the degree of symmetry of diffusional field, resulting in a decrease of the effective diffusion distance. Meanwhile, the viscous grain-boundary sliding is found to decrease the creep rate. The present analysis reveals that the grain-size exponent is dependent on the grain size and the grain-boundary viscosity: the exponent becomes unity for small grain sizes and/or high viscosity, while it is three for large grain sizes and/or low viscosity.


Sign in / Sign up

Export Citation Format

Share Document