The Nd-nanocluster Coupling Strength and its Effect in Excitation/de-excitation of Nd3+ Luminescence in Nd-doped Silicon-rich Silicon Oxide

2003 ◽  
Vol 770 ◽  
Author(s):  
Se-Young Seo ◽  
Jung H. Shin

AbstractThe Nd-nanocluster Si (nc-Si) coupling strength and its effect in excitation/de-excitation of Nd3+ luminescence in Nd-doped silicon-rich silicon oxide (SRSO) is investigated. Nd-doped SRSO thin films, which consist of nc-Si embedded inside a SiO2 matrix, were prepared by electron-cyclotron-resonance plasma enhanced chemical vapor deposition (ECR-PECVD) of SiH4 and O2 with co-sputtering of Nd and subsequent anneal at 950 °C. Efficient Nd3+ luminescence with moderate temperature quenching is observed. Based on the temperature dependence of Nd3+ luminescence lifetime, a coupling strength between nc-Si and Nd that is strong enough to result in efficient excitation of Nd3+ via quantum confined excitons while weak enough to result in a small back-transfer rate is identified as the key to Nd3+ luminescence.

1999 ◽  
Vol 597 ◽  
Author(s):  
Se-Young Seo ◽  
Hak-Seung Han ◽  
Jung H. Shin

AbstractThe waveguiding and 1.54 μm Er3+ photoluminescent properties of Er doped silicon-rich silicon oxide (SRSO) are investigated. Erbium-doped SRSO films, which consist of nanocrystalline Si clusters embedded inside Si0 2 matrix, were deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition of SiH4 and O2 with concurrent sputtering of erbium. The excess Si content of the SRSO films ranged from 0 to 10 at. %, and Er content ranged from 0.01 to 0.3 at. %. After deposition, films were rapid thermal annealed at temperatures between 750 and 1150°C for durations ranging from 2 to 20 min. to precipitate silicon nanoclusters. All films show strong room temperature 1.54 μm Er3+ photoluminescence. The luminescence lifetimes that can be > 6 msec. The refractive indices of the SRSO films range from 1.48 to 2.47, increasing with increasing excess Si content. Thus, waveguides can be formed easily by depositing erbium doped SRSO films on 1 μm thick SiO2 films. Furthermore, carrier-induced de-excitation mechanisms of excited erbium atoms in SRSO are nearly completely suppressed in such SRSO films, indicating that population inversion of Er3+ ions by carrier-mediated excitation is possible.


Sign in / Sign up

Export Citation Format

Share Document